小波变换信号去噪:从原理到实践,模极大值、阈值与相关性方法详解及应用实例


👨‍🎓 博主简介:博士研究生

🔬 超级学长:超级学长@实验室(提供各种程序开发、实验复现与论文指导)

📧 个人邮箱:easy_optics@126.com

💬 个人微信:easy_optics

🐧 个人企鹅:754357517



摘要

本博文全面深入地介绍了小波去噪相关知识。首先对小波去噪进行综述,阐述其概念发展及最新研究状态。接着详细讲解小波变换去噪的理论基础,包括信号去噪问题描述、函数正则性及其与小波变换模极大值关系、信号与噪声在小波变换各尺度传播特性。随后重点介绍了模极大值去噪法、基于小波变换尺度间相关性去噪和小波阈值去噪法三种典型方法,分析各自原理、算法步骤、优缺点及阈值选取规则等。最后通过对带噪声信号sumsin分别运用这三种方法去噪的实例,对比PSNR值、MSE值和NC值,直观展示各方法去噪效果。

一、小波去噪综述

近年来,小波去噪这一概念不断出现在有关信号处理的文献之中,这标志着一种新的信号去噪思想的出现。在早期的多尺度信号处理工作中,人们已经注意到信号与噪声在不同尺度有着不同的表现,并试图有效地利用这些特征,小波变换的出现为这一思想提供了自然而完美的工具,使信号的多尺度处理技术得到了迅速发展。

1992年,Mallat等人提出了基于信号奇异性(singularity)的信号多尺度边缘表示法,利用Lipschitz指数在多尺度上对信号、图像以及噪声的数学特性进行描述,并提出了模极大值去噪方法(S.Mallat,1989,1992),即根据信号和噪声在小波变换各尺度上的不同传播特性,剔除由噪声产生的模极大值点,保留信号所对应的模极大值点,然后利用所余模极大值点重构小波系数,进而恢复信号。基于上述思想,Xu等提出了信号相关性的空域相关滤波方法(spatially selective noise filtration, SSNF)(Xu Yansun, et al., 1994)。随后,斯坦福大学的Do和Johnstone另辟蹊径,在高斯噪声模型下,应用多维独立正态决策理论,提出了小波阈值去噪方法,并取得了大量的研究成果(I.K.Fodor and C.C.Kamath,2003; D.L.Donoho,1995),他们于1995年提出了信号去噪的软阈值方法和硬阈值方法,推导出VisuShrink阈值公式以及SureShrink阈值公式,并从理论上证明在均方意义下是渐进最优的。Coifman和Donoho也提出了平移不变小波去噪法(R.R.Coifman and D.L.Donoho,1995),进一步改善了去噪效果。Gao和Bruce把Donoho的软阈值函数和硬阈值函数进行改进,提出了semisoft阈值函数和garrotte阈值函数(Gao H.,1998; Gao H. and Bruce A.,1997),研究了不同收缩(shrinkage)函数的特性,给出阈值估计的偏差、方差等的计算公式,同时还说明了semisoft阈值方法比硬阈值方法连续性好,比软阈值方法有更小的偏差等优点。

Johnstone等人1997年给出一种相关噪声去除的小波阈值估计器。Hsing等人1999年提出一种基于齐性检测的去噪方法,与Mallat的模极大值原理去噪方法类似,但它是通过计算一个影响锥内小波系数模的和来估计信号的局部正则性,从而对小波系数进行滤波,该方法几乎不需要噪声的先验信息,并易于推广到二维的去噪。

总之,近年来有关小波去噪的文献非常多,而且还在不断发展,从变换方法上进行研究,通过选择不同的基函数等,或利用框架来进行变换(非抽取小波变换)或通过选取最优基来进行变换(小波包,多小波),在信号处理方面得到了更好的去噪效果。一些学者对小波系数建模,并与空域自适应方法结合,提出多种基于小波系数模型的去噪方法,其去噪效果取决于小波系数建模是否准确。这三个方面代表小波去噪技术的最新发展状态。

二、小波变换去噪的理论基础

     2.1 信号去噪问题的理论描述

小波变换是线性变换,设长度为 N 的信号 f n f_n fn被噪声所污染,所测得的含噪数据为:
y n = f n + e n \mathbf{y}_{\mathbf{n}}=\mathbf{f}_{\mathbf{n}}+\mathbf{e}_{\mathbf{n}} yn=fn+en

去噪的目的是,从含噪数据Y得到信号f 的一个逼近信号 f ~ \tilde{f} f~,使得在某种误差准则估计下 f ~ \tilde{f} f~是f 最佳逼近。也就是说,去噪的主要任务是,最大可能地将实际信号与噪声信号分离开,保留真实的信号,取出噪声信号,以达到去噪的目的。

小波去噪的基本方法是,将含噪信号进行多尺度小波变换,从时域变换到小波域,然后在各尺度下尽可能提取信号的小波系数,而去除属于噪声的小波系数,最后用小波逆变换重构信号。其流程框图如图1所示。

在这里插入图片描述

图1 小波去噪的框图

     2.2 函数的正则性及其度量

通过调整小波变换的尺度参数,小波变换可以聚焦于信号的局部结构。信号的奇异性和非正则结构,通常包含了其本质的信息。例如,图像亮度的不连续性表示景物中含有边缘,心电图和雷达信号中,令人感兴趣的信息包含在信号的峰变处。信号的局部正则性可以由小波变换模极大值随尺度参数的衰减性来刻画,奇异性和边缘可以通过跟踪小波变换在细尺度下的模极大值来检测,而信号和噪声在小波变换各尺度上具有不同的传播特性。

正则性一般用来刻画函数的光滑程度,正则性越高,函数越光滑,通常用Lipschitz指数α来度量函数的正则性。

     2.3 函数的正则性与小波变换模极大值之间的关系

设f(t) ∈ L 2 ( R ) \in\mathcal{L}^2(\mathbb{ R }) L2(R)在[a,b]区间具有一致 Lipschitz 指数 α \alpha α, u为函数f(t)的局部奇异点,则存在A>0使得

u ∈ [ a , b ]   ,   ∣ W f ( s , u ) ∣ ≤ A s α + 1 / 2 \mathrm{u\in[a,b]~,~\left|Wf(s,u)\right|\leq As^{\alpha+1/2}} u[a,b] , Wf(s,u)Asα+1/2

log ⁡ 2 ∣ W f ( s , u ) ∣ ≤ log ⁡ 2 A + ( α + 1 / 2 ) l o g 2 s \log_{2}\bigl|\mathrm{Wf}\bigl(\mathrm{s},\mathrm{u}\bigr)\bigr|\leq\log_{2}\mathrm{A}+(\alpha+1/2)\mathrm{log}_{2}\mathrm{s} log2 Wf(s,u) log2A+(α+1/2)log2s

当尺度 s 递增或递减时,|Wf( s, u) | 度量了f(t)在u的邻域内的变化,在f(t)具有一致 Lipschitz 指数 α \alpha α 的区间内, ∣ W f ( s , u ) ∣ \left|\mathrm{Wf(s,u)}\right| Wf(s,u)与s α ^{\alpha} α是同级增大或减小的。可见,函数f(t)在u点的 Lipschitz 正则性,依赖于 ∣ W f ( s , u ) ∣ \left|\mathrm{Wf(s,u)}\right| Wf(s,u)在u 的邻域中细尺度下的衰减性。

事实上, ∣ W f ( s , u ) ∣ \left|\mathrm{Wf(s,u)}\right| Wf(s,u)的衰减性可以由其局部极大值控制,若Wf( s, u) 关于u的导数满足

∂ W f ( s , u 0 ) ∂ u = 0 \frac{\partial\mathrm{Wf(s,u_{0})}}{\partial\mathrm{u}}=0 uWf(s,u0)=0

称小波变换 Wf(s,u)在 u = u 0 \mathbf{u}=\mathbf{u}_0 u=u0 点达到局部极值,若对于 u 0 \mathbf{u}_0 u0邻域中的任意u,都有 ∣ W f ( s , u ) ∣ ≤ ∣ W f ( s , u o ) ∣ \left|\mathrm{Wf(s,u)}\right|\leq\left|\mathrm{Wf(s,u_o)}\right| Wf(s,u)Wf(s,uo),并且在左邻域或右邻域满足严格的不等式关系 ∣ W f ( s , u ) ∣ < ∣ W f ( s , u o ) ∣ \left|\mathrm{Wf(s,u)}\right|<\left|\mathrm{Wf(s,u_o)}\right| Wf(s,u)<Wf(s,uo), 则称 ( s , u 0 ) \left(\mathrm{s},\mathrm{u}_0\right) (s,u0)为模极大点, ∣ W f ( s , u 0 ) ∣ \left|\mathrm{Wf}(\mathrm{s},\mathrm{u}_0)\right| Wf(s,u0)为模极大值。

W s f ( u ) = ( f ∗ ψ ‾ s ) ( u ) \mathrm{W}_{s}\mathrm{f}(\mathrm{u})=(\mathrm{f}*\overline{\psi}_{s})(\mathrm{u}) Wsf(u)=(fψs)(u)

W f ( s , u ) = s 1 / 2 W s f ( u ) \mathrm{Wf}\left(\mathrm{s},\mathrm{u}\right)=\mathrm{s}^{1/2}\mathrm{W}_{s}\mathrm{f}\left(\mathrm{u}\right) Wf(s,u)=s1/2Wsf(u)

特别地,在二进尺度下,有

∣ W s f ( u ) ∣ ≤ A s α \left|\mathrm{W}_{s}\mathrm{f}\left(\mathrm{u}\right)\right|\leq\mathrm{A}\mathrm{s}^{\alpha} Wsf(u)Asα

log ⁡ 2 ∣ W 2 , f ( u ) ∣ ≤ log ⁡ 2 A + α j \log_{2}\bigl|\mathrm{W}_{2},\mathrm{f}(\mathrm{u})\bigr|\leq\log_{2}\mathrm{A}+\alpha\mathrm{j} log2 W2,f(u) log2A+αj

由此可知,如果函数的 Lipschitz 指数 α > 0 \alpha>0 α>0,则该函数的小波变换模极大值将随尺度的增大而增大;反之,若 α < 0 \alpha<0 α<0,则该函数的小波变换模极大值将随尺度的增大而减小。

     2.4 信号与噪声在小波变换各尺度上的传播特性

        2.4.1 信号的特性

常用信号的Lipschitz指数是大于0的,即使是不连续的奇异信号只要在某一邻域中有界,也有α = 0。而且,在较小的尺度上,模极大值的个数基本相等。如果α > 0,则该函数的小波变换模极大值将随尺度的增大而增大;若α=0,则该函数的小波变换的模极大值不随尺度改变。

        2.4.2 噪声的特性

噪声所对应的 Lipschitz 指数通常是小于零的。如高斯白噪声是一个几乎处处奇异的随机分布, 它具有负的 Lipschitz 指数 α = − 1 2 − ε , ∀ ε > 0 \alpha=-\frac{1}{2}-\varepsilon,\forall\varepsilon>0 α=21εε>0。而且,高斯白噪声的平均稠密度是反比于尺度2 j ^\mathrm{j} j 的,即尺度越大,其平均稠密度越稀疏。由于 α < 0 \alpha<0 α<0,则该函数的小波变换模极大值将随尺度的增大而减小。

在这里插入图片描述

图2 信号与噪声在小彼变换各尺度上的模极大值的传播特性

以上分析表明信号与噪声在小波变换各尺度上的模极大值具有截然不同的传输特性,图2显示四个突变边缘点的尺度传播特性,它在t=1和t=4.5处有α > 0的正则性,其小波变换的模极大值随尺度增大而增大;在t=2处有一个阶梯形边界(α=0),其小波变换的模极大值不随尺度改变;在t=3.4处有一个Dirac型脉冲(α < 0),其模极大值随尺度增大而减小。

三、几种典型小波去噪方法

目前,小波去噪的基本方法有:(1) 利用小波变换模极大值去噪;(2) 基于小波变换尺度间相关性去噪;(3) 采用非线性小波阈值去噪。

     3.1 模极大值去噪法

算法的基本思想是,根据信号与噪声在不同尺度上模极大值的不同传播特性,从所有小波变换模极大值中选择信号的模极大值而去除噪声的模极大值,然后用剩余的小波变换模极大值重构原信号。

小波模极大值去噪的具体算法步骤为:

  1. 对含噪信号进行离散二进制小波变换,所选尺度数应使在最大分解尺度下信号的模极大值点数个占优,且信号重要的奇异点不丢失。一般选取4或5尺度。

  2. 求出每个尺度上小波变换系数对应的模极大点。

  3. 在最大分解尺度J上,小波变换模极大值几乎完全由信号控制,选取一个阈值,使得模极大值小于该阈值的点被作为噪声去除,并由此得到最大尺度上新的模极大值点。

  4. 从尺度J上的每个模极大值点开始,用ad hoc算法向上搜索其对应的模极大值曲线,在各尺度j上寻找每个模极大值点对应的传播点,保留信号产生的模极大值点,去除噪声引起的模极大值点,并将不在任何模极大曲线上的点去掉,这样逐级搜索,直到2尺度。

  5. 保留与2尺度对应的1尺度的极值点,而将其余位置的极值点置为零。

  6. 由各尺度保留下来的模极值点及其极值点的位置,选用交替投影方法重建信号。

小波变换模极大值去噪方法,具有很好的理论基础,对噪声的依赖性较小,无需知道噪声的方差,适合于低信噪比的去噪问题。这种去噪方法的缺点是,计算速度慢,小波分解尺度的选择是难点,小尺度下,信号受噪声影响较大,大尺度下,会使信号丢失某些重要的局部奇异性。

     3.2 基于小波变换尺度间相关性去噪

信号与噪声在不同尺度上模极大值的不同传播特性表明,信号的小波变换在各尺度相应位置上的小波系数之间有很强的相关性,而且在边缘处有很强的相关性,而噪声的小波系数则具有弱相关或不相关的特点,而噪声的小波变换主要集中在小尺度各层次中。

在不同尺度空间(分辨率)下,信号特征对应着许多大数值的小波系数,这些小波系数之间存在有相关性,称其为尺度间的相关,这种相关性是小波变换分解过程中内在固有的,反映了多尺度性;在相同的尺度空间下,重要的小波系数“聚集”在某些区域,如图像的边缘,一般是重要的小波系数出现的区域,这种相关性称为尺度内的相关。

根据信号与噪声的小波变换在不同尺度间的上述特点,可以通过将相邻尺度的小波系数直接相乘来增强信号,抑制噪声。Xu等人提出了一种SSNF方法。

首先定义相关系数及规范化相关系数。

C o r ( j , n ) = W 2 j f ( n ) ⋅ W 2 j + 1 f ( n ) \mathrm{Cor(j,n)=W_{2^{j}}f(n)\cdot W_{2^{j+1}}f(n)} Cor(j,n)=W2jf(n)W2j+1f(n)

称为尺度 j上 n 点处的相关系数。简记为

C o r ( j , n ) = W ( j , n ) ⋅ W ( j + 1 , n ) \mathrm{Cor(j,n)=W(j,n)\cdot W(j+1,n)} Cor(j,n)=W(j,n)W(j+1,n)

称 NCor(j,n)=Cor(j,n) P W ( j ) / P C o r ( j ) \sqrt{\mathrm{PW(j)/PCor(j)}} PW(j)/PCor(j) 为规范化相关系数,其中

P W ( j ) = ∑ n W ( j , n ) 2 \mathrm{PW(j)=\sum_{n}W(j,n)^{2}} PW(j)=nW(j,n)2

P C o r ( j ) = ∑ n C o r ( j , n ) 2 PCor(j)=\sum_{n}Cor(j,n)^{2} PCor(j)=nCor(j,n)2

PW(j),PCor(j)分别对应尺度 j 的小波系数与相关系数的能量。显然,在尺度 j下,小波系数与规范化相关系数具有相同的能量。相关去噪的核心环节是通过比较NCor(j,n)与W(j,n)的绝对值的大小来提取信号的边缘信息。

如果 ∣ N C o r ( j , n ) ∣ ≥ ∣ W ( j , n ) ∣ \left|\mathrm{NCor(j,n)}\right|\geq\left|\mathrm{W(j,n)}\right| NCor(j,n)W(j,n),这意味着相关运算的结果使该点所对应的小波变换的幅值增大, 从而认为 n \mathbf{n} n点的小波变换由信号控制,W(j,n)赋值给 W ~ ( \tilde{\mathcal{W} } ( W~(j, n),然后将该点的W( j, n) 和Cor(j,n)都置 0;如果|NCor( j, n) | < | W( j, n) | ,则认为该点的小波变换由噪声控制,对应该点的 W(j,n)和Cor(j,n)都保持不变。这样就将该尺度下重要的边缘点提取出来了。然后再重复以上步骤,提取次重要的边缘点。具体算法为:

重要的边缘点提取出来以后,小波系数和相关系数分别变为 W ′ W^{\prime } W( j, n) 和Co r ⋅ r^{\cdot } r( j, n),然后重新计算 P’W(j),P’Cor(j)和 N’Cor( j, n) ,比较 ∣ N ′ | \mathrm{N} ^{\prime } NCor( j, n) |和 ∣ W ′ | \mathrm{W} ^{\prime } W( j, n) ,提取次重要的边缘点。直到W(j,n) 中未被提取点的能量近似等于该尺度下噪声能量的阈值为止。然后进行下一尺度小波系数如果得到了各尺度下的 W ~ ( \tilde{\mathrm{W} } ( W~(j, n),就可以利用小波逆变换获得去噪以后的信号。

相关性去噪方法去噪效果比较稳定,在分析信号边缘方面有优势,不足之处是计算量较大,并且需要估算噪声方差。

     3.3 小波阂值去噪法

1992年,Donoho和Johnstone提出了小波阈值收缩去噪法(Wavelet thresholding或Wavelet Shrinkage),该方法在最小均方误差意义下可达近似最优,并且取得了较好的视觉效果,因而得到了深入广泛的研究和应用,他们采用的是正交离散小波变换(DWT),因此把它称为DWT小波阈值去噪方法。

小波阈值收缩去噪法的主要理论依据是,小波变换具有很强的数据去相关性,能够使信号的能量在小波域集中在少量的大的小波系数中,而噪声却分布在整个小波域,对应大量的数值小的小波系数,经小波分解后,信号的小波系数的幅值要大于噪声的小波系数的幅值,于是可以采用阈值的办法把信号的小波系数保留,而使大部分噪声的小波系数减少为零。

小波阈值收缩法去噪的具体处理过程是,将含噪信号在各尺度上进行小波分解,保留大尺度低分辨率下的全部小波系数,对于各尺度高分辨率下的小波系数,可以设定一个阈值,幅值低于该阈值的小波系数全部置零,高于该阈值的小波系数或者完整保留,或者做相应的收缩处理,最后将处理后获得的小波系数利用小波逆变换进行重构,恢复出有效的信号。

其中,在小波阈值收缩去噪法中最为重要的就是如何选择阈值和阈值函数。如果阈值太小,去噪后的信号仍然有噪声存在,相反地,阈值太大,重要的信号特征将被滤掉,引起偏差;从直观上讲,对于给定的小波系数,噪声越大,阈值就越大,所以大多数阈值选择过程是针对一组小波系数,即根据本组小波系数的统计特性,计算出一个阈值。

1. 阈值的选取规则

(1) VisuShrink 阈值

它也称为通用阈值,是由 Donoho 和 Johostone 提出的。

T = σ 2 ln ⁡ N \mathrm{T}=\sigma\sqrt{2\ln N} T=σ2lnN

其中, σ \sigma σ为噪声标准差,N 为信号的长度,这个阈值由于同信号的尺寸对数的平方很成正比,所以当 N 较大时,阈值趋向于将所有小波系数置零,此时小波滤噪器退化为低通滤波器。使用通用阈值会对一些边缘小波系数产生过扼杀,从而造成去噪信号的失真,使得重建信号误差增大。

这个阈值公式还要有一个先验条件,就是必须知道噪声的方差,比如对于一幅具体的图像信号来说,我们不可能预先知道噪声的方差,因此必须对噪声的方差进行估计,通常采用第一层细节信号来估计噪声的方差。

σ = M e d i a n ( ∣ Y i j ∣ ) 0.6745 , Y i j ∈ s u b b a n d H H i (第一层细节信号) \sigma=\frac{\mathrm{Median}(\left|\mathrm{Y}_{\mathrm{ij}}\right|)}{0.6745},\quad\mathrm{Y}_{\mathrm{ij}}\in\mathrm{subbandHH}_{\mathrm{i}}\text{(第一层细节信号)} σ=0.6745Median(Yij),YijsubbandHHi(第一层细节信号)

式中 σ \sigma σ 的分子部分表示对分解出的第一层小波系数取绝对值后再取中值。

(2) SureShrink 阈值

它也称为 Stein 无偏风险阈值,是一种基于 Stein 的无偏似然估计原理的自适应阈值。对一个给定的阈值T,得到它的似然估计,再将非似然T最小化,就得到所选的阈值,它是一种软件估计器。 令 x i ∼ i d 令\mathbf{x}_{\mathrm{i}}\stackrel{\mathrm{id}}{\sim} xiidN ( μ i , 1 ) (\mu_{\mathrm{i}},1) (μi,1),i = 1 , 2 , ⋯ =1,2,\cdots =1,2,,k,Stein无偏风险估计为:

S U R E ( λ , x ) = k − 2 ∑ i = 1 k ∣ x i ∣ ≤ λ ) + ∑ i = 1 k ( ∣ x i ∣ ∧ λ ) 2 \mathrm{SURE(\lambda,x)=k-2\sum_{i=1}^{k}\left|x_{i}\right|\leq\lambda)+\sum_{i=1}^{k}\left(\left|x_{i}\right|\wedge\lambda\right)^{2}} SURE(λ,x)=k2i=1kxiλ)+i=1k(xiλ)2

SURE 闽值为:

λ S U R E = a r g m i n S U R E λ ≥ 0 ( λ , x ) \lambda^{\mathrm{SURE}}=\underset{\lambda\geq0}{\mathrm{argminSURE}}(\lambda,\mathrm{x}) λSURE=λ0argminSURE(λ,x)

其中, x i x_{\mathrm{i}} xi为小波系数,且 σ = 1 \sigma=1 σ=1,否则要进行标准化, ∧ \wedge 为两数取小。

(3) Minmax 阈值

它是按照极大极小准则(Minimax 准则)来选取阈值,采用的是一种固定的阈值,它产生一个最小均方误差的极值,而不是无误差。在统计学上,这种极值原理用于设计估计器。因为被去噪的信号可以看作与未知回归函数的估计式相似,这种极值估计器可以在一个给定的函数中实现最大均方误差最小化。

具体的阈值选取规则为:

T = { σ ( 0.3936 + 0.1829 log ⁡ 2 n ) n > 32 0 n < 32 T=\begin{cases}\sigma(0.3936+0.1829\log_2n)&\quad n>32\\0&\quad n<32\end{cases} T={σ(0.3936+0.1829log2n)0n>32n<32

σ = M e d i a n ( ∣ Y i j ∣ ) 0.6745 \sigma = \frac {\mathrm{Median}( \left | \mathbf{Y} _{\mathrm{ij}}\right | ) }{0. 6745} σ=0.6745Median(Yij), Y i j ∈ \mathrm{Y} _{\mathrm{ij}}\in YijsubbandHH 1 ( _1( 1(第一层细节信号)

式中:n为小波系数的个数, σ \sigma σ为噪声的标准差。

当信号只有少量的高频系数位于噪声范围之内时,Minmax 和 SureShrink 阈值选取规则更加保守、 方便,仅将部分系数置零,不容易丢失真实信号成分,因此在信号的高频信息有很少一部分在噪声范围内时,这两种阈值选取规则非常有用,可以将弱小的信号提取出来。

除了以上三种常用的阈值选取方法,还有根据概率论知识确定阀值,基于零均值正态分布的置信区间阈值 δ = 3 σ ∼ 4 σ \delta=3\sigma\sim4\sigma δ=3σ4σ;以及根据最大最小准则(minimax 准则)选择阈值;还有根据交叉验证原理(cross validation 原理)选取阈值的方法等等。

2. 阈值函数的选择

在阈值收缩去噪法中,阈值函数主要可以分为如下两种:

(1) 硬阙值函数(Hard threshold)

f ^ = { 0 ∣ y ~ ∣ < T y ~ e l s e \hat{\mathbf{f}}=\begin{cases}0&\quad|\tilde{\mathbf{y}}|<\mathrm{T}\\\\\tilde{\mathbf{y}}&\quad\mathrm{else}\end{cases} f^= 0y~y~<Telse

(2)软网值函数(Soft threshold)

f ^ = { 0 ∣ y ~ ∣ < λ y ~ − λ s i g n ( y ~ ) e l s e \hat{\mathbf{f}}=\begin{cases}0&\quad|\tilde{\mathbf{y}}|<\lambda\\\\\tilde{\mathbf{y}}-\lambda\mathrm{sign}(\tilde{\mathbf{y}})&\quad\mathrm{else}\end{cases} f^= 0y~λsign(y~)y~<λelse

硬阈值方法可以很好保留信号边缘等局部特征,但信号会出现振铃、伪吉布斯效应等视觉失真, 软阀值方法处理结果相对平滑得多,但是软阈值方法会造成边缘模糊等失真现象,软阚值函数与硬阙值函数曲线如图3所示。

结合上述两种阈值函数的优点,能够在软阈值方法和硬阈值之间达到很好的折中,还有一些学者根据不同的应用场合,也对上述阈值函数进行了一定的修正,得到一些新的阀值函数,如 Semisoft 阈值函数以及 Garrote 阈值函数等,这两种阈值函数拥有更高阶的导数,重建信号更加平滑,去噪性能更好。

在这里插入图片描述

图3 硬阈值函致与软阈值函数

四、模极大值、阈值与相关性方法去噪实例分析

     4.1 模极大值去噪法

对带噪声信号sunnsin进行模极大值法去噪,得到的去噪信号与原始信号对比结果如图4所示。从图中可看到噪声信号明显清晰了。对应的去噪信号与原始信号的PSNR值为117.8859,MSE值为0.4936,NC值为0.8147。

在这里插入图片描述

图4 极大值去噪法进行信号去噪

     4.2 阈值去噪法

原始信号经过软阈值和硬阈值去噪的结果如图5所示。

其中,软阈值法对应的去噪信号与原始信号的PSNR值为111.7848,MSE值为0.9085,NC值为0.6181。硬阈值法对应的去噪信号与原始信号的PSNR值为114.1245,MSE值为0.7190,NC值为0.7142。

从PSNR值、MSE值和NC值可以看出,与软阈值函数相比,硬阈值函数去噪信号更接近原始信号,PSNR值大,MSE值小,NC值更接近1。

在这里插入图片描述

图5 软阈值法和硬阈值法信号去噪

     4.3 相关性去噪法

原始信号经过相关性去噪的结果如图6所示。

该方法对应的去噪信号与原始信号的PSNR值为123.8333,MSE值为0.2723,NC值为0.9033。从PSNR值、MSE值和NC值可以看出,相关性去噪对sumsin信号而言是去噪与原始信号最为接近的去噪方式。

在这里插入图片描述

图6 相关性去噪法进行信号去噪结果

五、参考文献

实例中的PSNR,MSE,NC等评价指标相关理论课参考博主的博文:MATLAB 图像处理中的噪声分析与图像评价——附Matlab程序

[1] 朱习军. 基于小波分析的高精度GPS测量质量控制研究[D]: 山东科技大学, 2006.

六、Matlab程序获取

更深入的研究请私信博主。


博主简介:擅长智能优化算法信号处理图像处理机器视觉深度学习神经网络等领域Matlab仿真以及实验数据分析等,matlab代码问题、商业合作、课题选题与科研指导等均可私信交流


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

超级学长

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值