小伙伴们考我的题

1

证 明 : ∫ 1 a f ( x 2 + a 2 x 2 ) d x x = ∫ 1 a f ( x + a 2 x ) d x x 证明:\int_1^af(x^2+\frac{a^2}{x^2})\frac{dx}{x}=\int_1^af(x+\frac{a^2}{x})\frac{dx}{x} :1af(x2+x2a2)xdx=1af(x+xa2)xdx
这个 f f f函数看起来感觉眼花缭乱的,而且两边好像一个是另一个的平方,所以换一哈,令 g ( x ) = f ( x + a 2 x ) g(x)=f(x+\frac{a^2}{x}) g(x)=f(x+xa2)

所以要证明的就是 ∫ 1 a g ( x 2 ) d x x = ∫ 1 a g ( x ) d x x \int_1^ag(x^2)\frac{dx}{x}=\int_1^ag(x)\frac{dx}{x} 1ag(x2)xdx=1ag(x)xdx

看左边怎么变变变,变到右边的
左边换元,令 u = x 2 u=x^2 u=x2
∫ 1 a g ( x 2 ) d x x = 1 2 ∫ 1 a 2 g ( u ) d u u \int_1^ag(x^2)\frac{dx}{x}=\frac{1}{2}\int_1^{a^2}g(u)\frac{du}{u} 1ag(x2)xdx=211a2g(u)udu
感觉这步还是能想当,毕竟这个换元还是经常见到嘛,但是后面的换元就牛皮了
拆成两坨 I 1 和 I 2 I_1和I_2 I1I2,能想到这么拆很牛皮很关键
1 2 ∫ 1 a 2 g ( u ) d u u = 1 2 ∫ 1 a g ( u ) d u u + 1 2 ∫ a a 2 g ( u ) d u u = I 1 + I 2 \frac{1}{2}\int_1^{a^2}g(u)\frac{du}{u}=\frac{1}{2}\int_1^{a}g(u)\frac{du}{u}+\frac{1}{2}\int_a^{a^2}g(u)\frac{du}{u}=I_1+I_2 211a2g(u)udu=211ag(u)udu+21aa2g(u)udu=I1+I2

然后就是这个 I 2 I_2 I2的换元,你看上下限要是同时除以 a a a是不是就变得和前面的一样了,所以令 t = u a t=\frac{u}{a} t=au,然而并不是这么换的。。。

如果 a 2 a^2 a2同时除以上下限也会有 1 和 a 1和a 1a的上下限,令 t = a 2 u ⇒ u = a 2 t t=\frac{a^2}{u}\Rightarrow u=\frac{a^2}{t} t=ua2u=ta2
这样换了之后很牛皮的,我也好像知道为啥 f f f函数会长成那个样子了,原来这样换了之后, f f f函数是不得变的,对应过来就是 g ( a 2 u ) = g ( u ) g(\frac{a^2}{u})=g(u) g(ua2)=g(u)
d u = − a 2 t 2 d t du=-\frac{a^2}{t^2}dt du=t2a2dt
I 2 = 1 2 ∫ a 1 g ( t ) − a 2 t 2 d t a 2 t = I 1 I_2=\frac{1}{2}\int_a^1g(t)\frac{-\frac{a^2}{t^2}dt}{\frac{a^2}{t}}=I_1 I2=21a1g(t)ta2t2a2dt=I1

2

求 极 限 lim ⁡ n → ∞ ∑ i = 1 n 1 n + i 2 + 1 n 求极限\lim_{n\to\infty}\sum_{i=1}^n\frac{1}{n+\frac{i^2+1}{n}} nlimi=1nn+ni2+11
这道题有求和又有极限,很明显是要变成定积分来算的,但是弄不出来,肯定是要放缩了
I = ∑ i = 1 n 1 n + i 2 + 1 n I=\sum_{i=1}^n\frac{1}{n+\frac{i^2+1}{n}} I=i=1nn+ni2+11
I 1 = ∑ i = 1 n 1 n + ( i + 1 ) 2 n I_1=\sum_{i=1}^n\frac{1}{n+\frac{(i+1)^2}{n}} I1=i=1nn+n(i+1)21
I 2 = ∑ i = 1 n 1 n + i 2 n I_2=\sum_{i=1}^n\frac{1}{n+\frac{i^2}{n}} I2=i=1nn+ni21
I 1 < I < I 2 I_1<I<I_2 I1<I<I2
I 2 I_2 I2倒是很好算出来,但是 I 1 I_1 I1喃?
这也是这道题的难点,看答案都没怎么看懂
I 1 = ∑ i = 1 n 1 n + ( i + 1 ) 2 n = ∑ i = 0 n − 1 1 n + ( i + 1 ) 2 n − 1 n + 1 2 n + 1 n + ( n + 1 ) 2 n 就 是 加 上 第 0 项 再 减 去 第 n 项 , 想 让 级 数 从 [ 1 → n ] 变 成 [ 0 → n − 1 ] I_1=\sum_{i=1}^n\frac{1}{n+\frac{(i+1)^2}{n}}=\sum_{i=0}^{n-1}\frac{1}{n+\frac{(i+1)^2}{n}}-\frac{1}{n+\frac{1^2}{n}}+\frac{1}{n+\frac{(n+1)^2}{n}}就是加上第0项再减去第n项,想让级数从[1\to n]变成[0\to n-1] I1=i=1nn+n(i+1)21=i=0n1n+n(i+1)21n+n121+n+n(n+1)210n,[1n][0n1]
所以后面两项取极限就成为变成0了,只剩第一项了
所以 I 1 = ∑ i = 0 n − 1 1 n + ( i + 1 ) 2 n I_1=\sum_{i=0}^{n-1}\frac{1}{n+\frac{(i+1)^2}{n}} I1=i=0n1n+n(i+1)21
而 ∑ i = 0 n − 1 1 n + ( i + 1 ) 2 n 令 k = i + 1 , ∴ I 1 = ∑ k = 1 n 1 n + k 2 n 而\sum_{i=0}^{n-1}\frac{1}{n+\frac{(i+1)^2}{n}}令k=i+1,\therefore I_1=\sum_{k=1}^{n}\frac{1}{n+\frac{k^2}{n}} i=0n1n+n(i+1)21k=i+1,I1=k=1nn+nk21

巧妙地把那里的 ( i + 1 ) 2 (i+1)^2 (i+1)2变成 i 2 i^2 i2,然后通过定积分算

3【解三个非齐次方程】

A = [ 1 0 1 − 1 2 0 0 0 1 ] , 满 足 A X + E = A 2 + X , 求 X A=\begin{bmatrix} 1 &0 &1 \\ -1& 2 &0 \\ 0& 0 &1 \end{bmatrix},满足AX+E=A^2+X,求X A=110020101,AX+E=A2+X,X

( A − E ) X = ( A − E ) ( A + E ) (A-E)X=(A-E)(A+E) (AE)X=(AE)(A+E)
A + E A+E A+E要是可逆就好解决,但是现在不可逆

( A − E ) = B , 令 X = [ X 1 , X 2 , X 3 ] , 令 b = [ b 1 , b 2 , b 3 ] = ( A − E ) ( A + E ) (A-E)=B,令X=[X_1,X_2,X_3],令b=[b_1,b_2,b_3]=(A-E)(A+E) (AE)=B,X=[X1,X2,X3],b=[b1,b2,b3]=(AE)(A+E)
就变成了 B X = b BX=b BX=b
也就是分别解三个非齐次方程
{ B X 1 = b 1 B X 2 = b 2 B X 3 = b 3 \left\{\begin{matrix} BX_1=b_1\\ BX_2=b_2 \\ BX_3=b_3 \end{matrix}\right. BX1=b1BX2=b2BX3=b3

其实就是把 [ B , b ] [B,b] [B,b]进行初等行变换
[ B , b ] = [ 1 − 1 0 3 − 3 1 0 0 1 0 0 2 0 0 0 0 0 0 ] [B,b]=\begin{bmatrix}{1} & {-1} & {0} & {3} & {-3} & {1} \\ {0} & {0} & {1} & {0} & {0} & {2} \\ {0} & {0} & {0} & {0} & {0} & {0}\end{bmatrix} [B,b]=100100010300300120
答案是这么多
在这里插入图片描述

3【分两段来计算】

求 ∫ 0 2 lim ⁡ n → ∞ ( x n + x 2 n ) n d x 求\int_0^2\lim_{n\to\infty}\sqrt[n]{(x^n+x^{2n})}dx 02nlimn(xn+x2n) dx
我 把 化 成 这 样 ∫ 0 2 lim ⁡ n → ∞ ( x n + x 2 n ) 1 n d x 以 为 要 用 重 要 极 限 , 但 其 实 不 用 我把化成这样\int_0^2\lim_{n\to\infty}(x^n+x^{2n})^{\frac{1}{n}}dx以为要用重要极限,但其实不用 02nlim(xn+x2n)n1dx
原 式 = ∫ 0 1 x ( 1 + x n ) 1 n d x + ∫ 1 2 x 2 ( 1 + 1 x n ) 1 n , 里 面 不 是 重 要 极 限 , 直 接 是 开 n 次 根 号 等 于 1 = ∫ 0 1 x d x + ∫ 1 2 x 2 d x 原式=\int_0^1x(1+x^n)^{\frac{1}{n}}dx+\int_1^2x^2(1+\frac{1}{x^n})^{\frac{1}{n}},里面不是重要极限,直接是开n次根号等于1\\ =\int_0^1xdx+\int_1^2x^2dx =01x(1+xn)n1dx+12x2(1+xn1)n1,,n1=01xdx+12x2dx

4

求 ∫ 1 1 + x 4 d x 求\int \frac{1}{1+x^{4}} d x 1+x41dx
∫ 1 1 + x 4 d x = 1 2 ( ∫ x 2 + 1 x 4 + 1 d x − ∫ x 2 − 1 x 4 + 1 d x ) . \int \frac{1}{1+x^{4}} \mathrm{d} x=\frac{1}{2}\left(\int \frac{x^{2}+1}{x^{4}+1} \mathrm{d} x-\int \frac{x^{2}-1}{x^{4}+1} \mathrm{d} x\right). 1+x41dx=21(x4+1x2+1dxx4+1x21dx).
而 x 2 + 1 x 4 + 1 d x = ∫ 1 + 1 x 2 x 2 + 1 x 2 d x = ∫ 1 2 + ( x − 1 x ) 2 d ( x − 1 x ) = 1 2 arctan ⁡ x 2 − 1 2 x + C 而\frac{x^{2}+1}{x^{4}+1} \mathrm{d} x=\int \frac{1+\frac{1}{x^{2}}}{x^{2}+\frac{1}{x^{2}}} \mathrm{d} x=\int \frac{1}{2+\left(x-\frac{1}{x}\right)^{2}} \mathrm{d}\left(x-\frac{1}{x}\right)=\frac{1}{\sqrt{2}} \arctan \frac{x^{2}-1}{\sqrt{2} x}+C x4+1x2+1dx=x2+x211+x21dx=2+(xx1)21d(xx1)=2 1arctan2 xx21+C

∫ x 2 − 1 x 4 + 1 d x = ∫ 1 − 1 x 2 x 2 + 1 x 2 d x = ∫ 1 ( x + 1 x ) 2 − 2 d ( x + 1 x ) = 1 2 2 ln ⁡ ∣ x + 1 x − 2 x + 1 x + 2 ∣ + C \int \frac{x^{2}-1}{x^{4}+1} \mathrm{d} x=\int \frac{1-\frac{1}{x^{2}}}{x^{2}+\frac{1}{x^{2}}} \mathrm{d} x=\int \frac{1}{\left(x+\frac{1}{x}\right)^{2}-2} \mathrm{d}\left(x+\frac{1}{x}\right)=\frac{1}{2 \sqrt{2}} \ln \left|\frac{x+\frac{1}{x}-\sqrt{2}}{x+\frac{1}{x}+\sqrt{2}}\right|+C x4+1x21dx=x2+x211x21dx=(x+x1)221d(x+x1)=22 1lnx+x1+2 x+x12 +C

5

求 I = ∫ 3 π 4 π arcsin ⁡ r 2 ∣ 0 2 sin ⁡ θ d θ 求I=\left.\int_{\frac{3 \pi}{4}}^{\pi} \arcsin \frac{r}{2}\right|_{0} ^{2 \sin \theta} d \theta I=43ππarcsin2r02sinθdθ
答案是 = ∫ 3 π 4 π ( π − θ ) d θ = π 2 32 =\int_{\frac{3 \pi}{4}}^{\pi}(\pi-\theta) d \theta=\frac{\pi^{2}}{32} =43ππ(πθ)dθ=32π2
因为 π − θ 才 在 a r c s i n 的 定 义 域 里 面 \pi-\theta才在arcsin的定义域里面 πθarcsin

7

I n = ∫ 0 π 2 sin ⁡ 2 n x sin ⁡ x d x , n 为 整 数 I_n=\int_{0}^{\frac{\pi}{2}} \frac{\sin 2 n x}{\sin x} d x,n为整数 In=02πsinxsin2nxdx,n

8

F ( x , y ) 在 点 ( x 0 , y 0 ) 领 域 有 : F ( x 0 , y 0 ) = 0 , F x ′ ( x 0 , y 0 ) = 0 , F y ′ ( x 0 , y 0 ) > 0 , F x x ′ ′ < 0 , 则 由 方 程 F ( x , y ) = 0 确 定 的 隐 函 数 在 x 0 处 的 极 值 情 况 是 什 么 F(x,y)在点(x_0,y_0)领域有:F(x_0,y_0)=0,F'_x(x_0,y_0)=0,F'_y(x_0,y_0)>0,F''_{xx}<0,\\ 则由方程F(x,y)=0确定的隐函数在x_0处的极值情况是什么 F(x,y)(x0,y0):F(x0,y0)=0,Fx(x0,y0)=0,Fy(x0,y0)>0,Fxx<0,F(x,y)=0x0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值