概率论中多元随机变量函数分布中的卷积公式原来是重积分换元

重积分换元(雅克比行列式)

{ x = x ( u , v ) y = y ( u , v ) \left\{\begin{matrix} x=x(u,v)\\ \\ y=y(u,v) \end{matrix}\right. x=x(u,v)y=y(u,v)

J = ∣ ∂ x ∂ u ∂ x ∂ v ∂ y ∂ u ∂ y ∂ v ∣ J=\begin{vmatrix} \frac{\partial x}{\partial u}&\frac{\partial x}{\partial v}\\ \\\frac{\partial y}{\partial u} &\frac{\partial y}{\partial v} \end{vmatrix} J=uxuyvxvy

d x d y = d [ x ( u , v ) ] d [ y ( u , v ) ] = ∣ J ∣ ⋅ d u d v dxdy=d[x(u,v)]d[y(u,v)]=|J|\cdot dudv dxdy=d[x(u,v)]d[y(u,v)]=Jdudv

卷积公式

①: Z = X + Y Z=X+Y Z=X+Y
f z ( z ) = ∫ − ∞ + ∞ f ( z − y , y ) d y = ∫ − ∞ + ∞ f ( x , z − x ) d x f_{z}(z)=\int_{-\infty}^{+\infty} f(z-y, y) \mathrm{d} y=\int_{-\infty}^{+\infty} f(x, z-x) \mathrm{d} x fz(z)=+f(zy,y)dy=+f(x,zx)dx
②: Z = X ⋅ Y Z=X\cdot Y Z=XY
f Z ( z ) = ∫ − ∞ + ∞ 1 ∣ x ∣ f ( x , z x ) d x = ∫ − ∞ + ∞ 1 ∣ y ∣ f ( z y , y ) d y f_{Z}(z)=\int_{-\infty}^{+\infty} \frac{1}{|x|} f\left(x, \frac{z}{x}\right) \mathrm{d} x=\int_{-\infty}^{+\infty} \frac{1}{|y|} f\left(\frac{z}{y}, y\right) \mathrm{d} y fZ(z)=+x1f(x,xz)dx=+y1f(yz

  • 27
    点赞
  • 59
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值