2020张宇1000题【好题收集】【第一章:极限、连续】

一.极限、连续

函数极限

容易犯的错误:

①:虽然求极限阔以把加减号拆开然后分别求极限,但是这个是有条件的,比如这种就不能

lim ⁡ x → 0 1 − x 2 c o s 2 x − 1 x 2 \lim_{x\to0}\frac{\sqrt{1-x^2}cos^2x-1}{x^2} x0limx21x2 cos2x1
这个如果拆开了就是 ∞ − ∞ \infty-\infty 属于不能判断的情况,就不能拆

其实不管加减乘除,实际上就是未定式不能拆开,有两种 ∞ − ∞ 和 0 − 0 \infty-\infty和0-0 00说不清楚是等于多少,而其他的比如说 ∞ ± 0 \infty\pm0 ±0肯定是等于 ∞ \infty 的,0根本没影响
但是比如像1.22的这道题属于 ∞ − ∞ + 0 \infty-\infty+0 +0的这种
lim ⁡ x → ∞ ( x 3 + x 2 ) e 1 x − 1 + x 6 − t a n 1 x ⋅ e 1 x \lim_{x\to\infty}(x^3+\frac{x}{2})e^{\frac{1}{x}}-\sqrt{1+x^6}-tan\frac{1}{x}\cdot e^{\frac{1}{x}} xlim(x3+2x)ex11+x6 tanx1ex1
后面这项 t a n 1 x ⋅ e 1 x tan\frac{1}{x}\cdot e^{\frac{1}{x}} tanx1ex1答案直接就不要了是为啥喃?
按道理来说 ∞ − ∞ \infty-\infty 可能是0,然后三项就变成两项 0 − 0 0-0 00又是未定式,这样就不能省略,而答案省略了却对了的原因是因为后面算出来 ∞ − ∞ = ∞ \infty-\infty=\infty =,所以才对

②:用洛必达法则的时候:右存在,则左存在,但左存在,不一定右存在

lim ⁡ x → 0 x 2 s i n 1 x x = x s i n 1 x = 0 \lim_{x\to0}\frac{x^2sin\frac{1}{x}}{x}=xsin\frac{1}{x}=0 x0limxx2sinx1=xsinx1=0
但是用洛必达
lim ⁡ x → 0 x 2 s i n 1 x x = 2 x s i n 1 x − c o s 1 x , 极 限 就 不 存 在 \lim_{x\to0}\frac{x^2sin\frac{1}{x}}{x}=2xsin\frac{1}{x}-cos\frac{1}{x},极限就不存在 x0limxx2sinx1=2xsinx1cosx1,

③:泰勒展开的时候,阶数要展够,比如这道

lim ⁡ x → 0 ( 1 + x 2 ) ( 1 − c o s 2 x ) − 2 x 2 x 4 \lim_{x\to0}\frac{(1+x^2)(1-cos2x)-2x^2}{x^4} x0limx4(1+x2)(1cos2x)2x2
答案是 4 3 \frac{4}{3} 34

④:要求 f ( 0 ) = 0 f(0)=0 f(0)=0

lim ⁡ x → 0 e 1 − 1 2 x − e 1 − x x \lim_{x\to0}\frac{e^{1-\frac{1}{2}x}-e^{1-x}}{x} x0limxe121xe1x
这个求极限的时候我直接把 e 1 − 1 2 x 和 e 1 − x 展 开 了 e^{1-\frac{1}{2}x}和e^{1-x}展开了 e121xe1x

然后化成 1 + 1 − 1 2 x − ( 1 + 1 − x ) x = 1 2 \frac{1+1-\frac{1}{2}x-(1+1-x)}{x}=\frac{1}{2} x1+121x(1+1x)=21就错了

因为我们经常用的泰勒展开(也就是麦克劳林)是在 x 0 = 0 x_0=0 x0=0的地方展开的,因此 e f ( x ) e^{f(x)} ef(x)要展开的话得要求 f ( x ) = 0 f(x)=0 f(x)=0

因此如果这道题要展开的话就阔以把常数提出来变成 lim ⁡ x → 0 e ( e − 1 2 x − e − x ) x \lim_{x\to0}\frac{e(e^{-\frac{1}{2}x}-e^{-x})}{x} limx0xe(e21xex)这样就能够展开了,答案等于 e 2 \frac{e}{2} 2e

⑤:要求 f ( x ) 在 0 点 有 意 义 f(x)在0点有意义 f(x)0

我 还 犯 过 的 错 误 就 是 把   e 1 x   这 东 西 展 开 了 我还犯过的错误就是把\ e^{\frac{1}{x}}\ 这东西展开了  ex1 西
展开变成 e 1 x = 1 + 1 x + O ( 1 x ) e^{\frac{1}{x}=1+\frac{1}{x}+O(\frac{1}{x})} ex1=1+x1+O(x1),当x趋向零的时候, O ( 1 x ) O(\frac{1}{x}) O(x1)这个不叫高阶无穷小了,而变成高阶无穷大了,因此在求极限中当然不能忽略啦~

⑥:非常非常非常经典的一道题

证 明 lim ⁡ x → ∞ e x ( 1 + 1 x ) x 2 = e 1 2 证明\lim_{x\to\infty}\frac{e^x}{(1+\frac{1}{x})^{x^2}}=e^{\frac{1}{2}} xlim(1+x1)x2ex=e21
常见错误就是先算 ( 1 + 1 x ) x 求 极 限 = e (1+\frac{1}{x})^x求极限=e (1+x1)x=e,所以 ( 1 + 1 x ) x 2 = e x (1+\frac{1}{x})^{x^2}=e^x (1+x1)x2=ex,错误原因是求极限是个整体,不能一部分求一部分不求

但是这样做为啥也不对喃?
lim ⁡ x → ∞ ( 1 + 1 x ) x 2 = lim ⁡ x → ∞ e x 2 l n ( 1 + 1 x ) = e x 2 ⋅ 1 x = e x \lim_{x\to\infty}(1+\frac{1}{x})^{x^2}=\lim_{x\to\infty}e^{x^2ln(1+\frac{1}{x})}=e^{x^2\cdot\frac{1}{x}}=e^x xlim(1+x1)x2=xlimex2ln(1+x1)=ex2x1=ex
这个的原因应该是展开精度不够,上面的 l n ( 1 + 1 x ) ∼ 1 x ln(1+\frac{1}{x})\sim\frac{1}{x} ln(1+x1)x1相当于展开到第一项,精度不够,如果多写几项就能发现
lim ⁡ x → ∞ e x 2 l n ( 1 + 1 x ) = e x 2 ( 1 x − 1 2 x 2 + O ( 1 x 2 ) ) = e x ⋅ e − 1 2 ⋅ e O ( 1 x 2 ) ) = e x ⋅ e − 1 2 ⋅ 1 \lim_{x\to\infty}e^{x^2ln(1+\frac{1}{x})}=e^{x^2(\frac{1}{x}-\frac{1}{2x^2}+O(\frac{1}{x^2}))}=e^x\cdot e^{-\frac{1}{2}}\cdot e^{O(\frac{1}{x^2}))}=e^x\cdot e^{-\frac{1}{2}}\cdot 1 xlimex2ln(1+x1)=ex2(x12x21+O(x21))=exe21eO(x21))=exe211
这样答案就对了

1.6

lim ⁡ x → 0 ( 3 + 2 t a n x ) x − 3 x 3 s i n 2 x + x 3 c o s 1 x \lim_{x\to 0}\frac{(3+2tanx)^x-3^x}{3sin^2x+x^3cos\frac{1}{x}} x0lim3sin2x+x3cosx1(3+2tanx)x3x
就是分母这里有点不好搞
通过求极限 lim ⁡ x → 0 x 3 c o s 1 x 3 s i n 2 x = 1 3 x c o s x = 0 \lim_{x\to0}\frac{x^3cos\frac{1}{x}}{3sin^2x}=\frac{1}{3}xcosx=0 limx03sin2xx3cosx1=31xcosx=0发现 x 3 c o s 1 x x^3cos\frac{1}{x} x3cosx1 3 s i n 2 x 3sin^2x 3sin2x 的高阶无穷小,所以阔以直接省略掉,然后就好做了T_T

1.8

I = lim ⁡ x → 0 ∫ 0 x s i n 2 t 4 + t 2 ∫ 0 x ( t + 1 − 1 ) d t d t I=\lim_{x\to0}\int_0^x\frac{sin2t}{\sqrt{4+t^2}\int_0^x(\sqrt{t+1}-1)dt}dt I=x0lim0x4+t2 0x(t+1 1)dtsin2tdt
这道题是我见过的最奇怪的求极限的题,答案是用的洛必达???没懂怎么用的,分数的形式不是都没有嘛???
还是小波厉害~用的积分中值定理来化简的
先把里面的积分化简
I = lim ⁡ x → 0 ∫ 0 x s i n 2 t 4 + t 2 ( η + 1 − 1 ) ∫ 0 x d t d t = ∫ 0 x s i n 2 t 4 + t 2 ( η + 1 − 1 ) x d t 再 把 外 面 的 积 分 化 简 = s i n 2 ξ 4 + ξ 2 ( η + 1 − 1 ) x ∫ 0 x d t = x s i n 2 ξ 4 + ξ 2 ( η + 1 − 1 ) x = I=\lim_{x\to0}\int_0^x\frac{sin2t}{\sqrt{4+t^2}(\sqrt{\eta+1}-1)\int_0^xdt}dt=\int_0^x\frac{sin2t}{\sqrt{4+t^2}(\sqrt{\eta+1}-1)x}dt再把外面的积分化简=\frac{sin2\xi}{\sqrt{4+\xi^2}(\sqrt{\eta+1}-1)x}\int_0^xdt=\frac{xsin2\xi}{\sqrt{4+\xi^2}(\sqrt{\eta+1}-1)x}= I=x0lim0x4+t2 (η+1 1)0xdtsin2tdt=0x4+t2 (η+1 1)xsin2tdt=4+ξ2 (η+1 1)xsin2ξ0xdt=4+ξ2 (η+1 1)xxsin2ξ=

∵ η ∈ ( 0 , x ) , ξ ∈ ( 0 , x ) \because \eta\in(0,x),\xi\in(0,x) η(0,x),ξ(0,x)

∴ η → 0 , ξ → 0 \therefore \eta\to0,\xi\to0 η0,ξ0
∴ I = x ⋅ 2 ξ 2 ( η + 1 − 1 ) x = x ⋅ 2 ξ 2 1 2 η x = 2 ξ η = 2 \therefore I=\frac{x\cdot2\xi}{2(\sqrt{\eta+1}-1)x}=\frac{x\cdot2\xi}{2\frac{1}{2}\eta x}=\frac{2\xi}{\eta}=2 I=2(η+1 1)xx2ξ=221ηxx2ξ=η2ξ=2

哦哦我懂为啥阔以提出来了,还是小波给我说滴:
令 F ( x ) = ∫ 0 x ( t + 1 − 1 ) d t 令F(x)=\int_0^x(\sqrt{t+1}-1)dt F(x)=0x(t+1 1)dt

I = lim ⁡ x → 0 ∫ 0 x s i n 2 t 4 + t 2 F ( x ) d t , 现 在 就 能 看 出 来 为 啥 阔 以 提 出 来 了 , 积 分 变 量 是 t , 所 以 F ( x ) 阔 以 提 出 来 , 然 后 就 阔 以 用 洛 必 达 了 I=\lim_{x\to0}\int_0^x\frac{sin2t}{\sqrt{4+t^2}F(x)}dt,现在就能看出来为啥阔以提出来了,积分变量是t,所以F(x)阔以提出来,然后就阔以用洛必达了 I=x0lim0x4+t2 F(x)sin2tdt,,t,F(x),

1.22

lim ⁡ x → + ∞ [ ( x 3 + x 2 − t a n 1 x ) e 1 x − 1 + x 6 ] \lim_{x\to+\infty}[(x^3+\frac{x}{2}-tan\frac{1}{x})e^{\frac{1}{x}}-\sqrt{1+x^6}] x+lim[(x3+2xtanx1)ex11+x6 ]
答 案 是 变 成 这 样 : lim ⁡ x → ∞ ( x 3 + x 2 ) e 1 x − 1 + x 6 − t a n 1 x ⋅ e 1 x , 然 后 面 这 项 t a n 1 x ⋅ e 1 x 答 案 直 接 就 不 要 了 答案是变成这样:\lim_{x\to\infty}(x^3+\frac{x}{2})e^{\frac{1}{x}}-\sqrt{1+x^6}-tan\frac{1}{x}\cdot e^{\frac{1}{x}},然后面这项tan\frac{1}{x}\cdot e^{\frac{1}{x}}答案直接就不要了 xlim(x3+2x)ex11+x6 tanx1ex1tanx1ex1

按道理来说 ∞ − ∞ \infty-\infty 可能是0,然后三项就变成两项 0 − 0 0-0 00又是未定式,这样就不能省略,而答案省略了却对了的原因是因为后面算出来 ∞ − ∞ = ∞ \infty-\infty=\infty =,所以才对

1.40(不常见题型)

设 α ≥ 5 , 则 k 是 多 少 , I = lim ⁡ x → ∞ [ ( x α + 8 x 4 + 2 ) k − x ] 极 限 存 在 设\alpha\geq5,则k是多少,I=\lim_{x\to\infty}[(x^{\alpha}+8x^4+2)^k-x]极限存在 α5,k,I=xlim[(xα+8x4+2)kx]

I = lim ⁡ t → 0 ( 1 + 8 t α − 4 ) k − t k α − 1 t k α I=\lim_{t\to0}\frac{(1+8t^{\alpha-4)^k-t^{k\alpha-1}}}{t^{k\alpha}} I=t0limtkα(1+8tα4)ktkα1
然后强行说只有当 k α − 1 = 0 k\alpha-1=0 kα1=0的时候,极限才存在
然后解出 k = 1 α k=\frac{1}{\alpha} k=α1,再带进去求极限

这题感觉有点。。。怎么说喃,他要化成那种能比较方便地来求极限的那种形式,然后才能看出啥时候存在,啥时候不存在

1.42

lim ⁡ x → 0 c o s x − c o s x 3 s i n x 2 x \lim_{x\to0}\frac{\sqrt{cosx}-\sqrt[3]{cosx}}{sinx^2x} x0limsinx2xcosx 3cosx
①换元,令 t = c o s 1 6 x t=cos^{\frac{1}{6}}x t=cos61x,然后用洛必达

c o s x − c o s x 3 x 2 = ( c o s x − 1 ) − ( c o s x 3 − 1 ) x 2 \frac{\sqrt{cosx}-\sqrt[3]{cosx}}{x^2}=\frac{(\sqrt{cosx}-1)-(\sqrt[3]{cosx}-1)}{x^2} x2cosx 3cosx =x2(cosx 1)(3cosx 1)

其中 c o s x − 1 = ( 1 + c o s x − 1 ) 1 2 − 1 ∼ 1 2 ( c o s x − 1 ) ∼ − 1 4 x 2 \sqrt{cosx}-1=(1+cosx-1)^\frac{1}{2}-1\sim\frac{1}{2}(cosx-1)\sim-\frac{1}{4}x^2 cosx 1=(1+cosx1)21121(cosx1)41x2另外一个也类似

1.44(打星)

lim ⁡ x → 0 1 − c o s x ⋅ c o s 2 x ⋅ c o s 3 x 3 x 2 \lim_{x\to 0}\frac{1-cosx\cdot \sqrt{cos2x}\cdot \sqrt[3]{cos3x}}{x^2} x0limx21cosxcos2x 3cos3x
这题真tm牛皮~
题1.42的换元以及变形都不能用了
没想到分子阔以化成这样
1 − a b c = ( 1 − a ) + a ( 1 − b ) + a b ( 1 − c ) 1-abc=(1-a)+a(1-b)+ab(1-c) 1abc=(1a)+a(1b)+ab(1c)
这样就能变形来做了

原来这道题是有题源的,原题为:
lim ⁡ x → 0 1 − c o s x ⋅ c o s 2 x ⋅ c o s 3 x 3 ⋅ . . . ⋅ c o s n x n x 2 \lim_{x\to 0}\frac{1-cosx\cdot \sqrt{cos2x}\cdot \sqrt[3]{cos3x}\cdot...\cdot\sqrt[n]{cosnx}}{x^2} x0limx21cosxcos2x 3cos3x ...ncosnx
虽然题解是用洛必达,但要叫我来洛我肯定不愿意,这怎么求导嘛T_T,结果答案令我大吃一斤T_T还真能求导QAQ
f ( x ) = c o s x ⋅ c o s 2 x ⋅ c o s 3 x 3 ⋅ . . . ⋅ c o s n x n = e l n f ( x ) f(x)=cosx\cdot \sqrt{cos2x}\cdot \sqrt[3]{cos3x}\cdot...\cdot\sqrt[n]{cosnx}=e^{lnf(x)} f(x)=cosxcos2x 3cos3x ...ncosnx =elnf(x)

∴ f ′ ( x ) = e l n f ( x ) ⋅ [ l n f ( x ) ] ′ = f ( x ) ⋅ [ l n ( c o s x ) + l n ( c o s 2 x + . . . + l n ( c o s n x n ) ) ] ′ = f ( x ) ⋅ [ − t a n x − 1 2 t a n 2 x ⋅ 2 − . . . − 1 n t a n n x ⋅ n ] = − f ( x ) ⋅ ∑ k = 1 n t a n k x \therefore f'(x)=e^{lnf(x)}\cdot[lnf(x)]'=f(x)\cdot[ln(cosx)+ln(\sqrt{cos2x}+...+ln(\sqrt[n]{cosnx}))]'=f(x)\cdot[-tanx-\frac{1}{2}tan2x\cdot 2-...-\frac{1}{n}tannx\cdot n]=-f(x)\cdot\sum_{k=1}^ntankx f(x)=elnf(x)[lnf(x)]=f(x)[ln(cosx)+ln(cos2x +...+ln(ncosnx ))]=f(x)[tanx21tan2x2...n1tannxn]=f(x)k=1ntankx

∴ 原 式 求 洛 必 达 = − f ′ ( x ) 2 x = 1 2 ⋅ ∑ k = 1 n t a n k x x = 1 2 ⋅ ∑ k = 1 n k = n ( n + 1 ) 4 \therefore 原式求洛必达=\frac{-f'(x)}{2x}=\frac{1}{2}\frac{\cdot\sum_{k=1}^ntankx}{x}=\frac{1}{2}\cdot\sum_{k=1}^nk=\frac{n(n+1)}{4} =2xf(x)=21xk=1ntankx=21k=1nk=4n(n+1)

1.45(打星)【证明题】【放缩】

f ( 1 ) = 1 , f ′ ( x ) = 1 x 2 + f 2 ( x ) , 证 明 lim ⁡ x → ∞ f ( x ) 极 限 存 在 且 小 于 1 + π 2 f(1)=1,f'(x)=\frac{1}{x^2+f^2(x)},证明\lim_{x\to\infty}f(x)极限存在且小于1+\frac{\pi}{2} f(1)=1,f(x)=x2+f2(x)1,xlimf(x)1+2π
这种题就属于那种以前没见过的话就特别懵逼的题

∫ 1 x f ′ ( t ) d t = f ( x ) + c \int_1^xf'(t)dt=f(x)+c 1xf(t)dt=f(x)+c

x = 1 时 ⇒ 0 = f ( 1 ) + c ⇒ c = − 1 x=1时\Rightarrow 0=f(1)+c\Rightarrow c=-1 x=10=f(1)+cc=1

∴ f ( x ) − 1 = ∫ 1 x f ′ ( t ) d t = ∫ 1 x 1 t 2 + f 2 ( t ) d t \therefore f(x)-1=\int_1^xf'(t)dt=\int_1^x\frac{1}{t^2+f^2(t)}dt f(x)1=1xf(t)dt=1xt2+f2(t)1dt

又 ∵ 1 x 2 + f 2 ( x ) > 0 又\because \frac{1}{x^2+f^2(x)}>0 x2+f2(x)1>0

∴ f ′ ( x ) > 0 ⇒ f ( x ) 单 增 \therefore f'(x)>0\Rightarrow f(x)单增 f(x)>0f(x)

∴ f ( x ) > = 1 , 在 x ∈ ( 1 , + ∞ ) \therefore f(x)>=1,在x\in(1,+\infty) f(x)>=1,x(1,+)

∴ 1 t 2 + f 2 ( t ) ≤ 1 t 2 + 1 ⇒ ∫ 1 x 1 t 2 + f 2 ( t ) d t ≤ ∫ 1 x 1 t 2 + 1 d t \therefore \frac{1}{t^2+f^2(t)}\leq\frac{1}{t^2+1}\Rightarrow\int_1^x\frac{1}{t^2+f^2(t)}dt\leq\int_1^x\frac{1}{t^2+1}dt t2+f2(t)1t2+111xt2+f2(t)1dt1xt2+11dt

∴ f ( x ) − 1 = ∫ 1 x 1 t 2 + f 2 ( t ) d t ≤ ∫ 1 x 1 t 2 + 1 d t \therefore f(x)-1=\int_1^x\frac{1}{t^2+f^2(t)}dt\leq\int_1^x\frac{1}{t^2+1}dt f(x)1=1xt2+f2(t)1dt1xt2+11dt

即: f ( x ) ≤ 1 + ∫ 1 x 1 t 2 + 1 d t f(x)\leq1+\int_1^x\frac{1}{t^2+1}dt f(x)1+1xt2+11dt

再求个极限

lim ⁡ x → ∞ f ( x ) ≤ 1 + ∫ 1 ∞ 1 t 2 + 1 d t = 1 + π 4 ≤ 1 + π 2 \lim_{x\to\infty}f(x)\leq1+\int_1^{\infty}\frac{1}{t^2+1}dt=1+\frac{\pi}{4}\leq1+\frac{\pi}{2} limxf(x)1+1t2+11dt=1+4π1+2π
这道题中有 π 2 \frac{\pi}{2} 2π,求极限中好像只有 a r c t a n   x arctan\ x arctan x才会出现 π 2 \frac{\pi}{2} 2π,所以再看有没有跟 a r c t a n   x arctan\ x arctan x相关的

数列极限

例3

证 明 数 列   ( 1 + 1 n ) n   极 限 存 在 证明数列\ {(1+\frac{1}{n})^n}\ 极限存在  (1+n1)n 
一般要证明极限存在都是要证明两个:单调、有界
这个的证明感觉很厉害,也是张宇18讲上面看到的
①:证明单增
设 e n = ( 1 + 1 n ) n 设e_n=(1+\frac{1}{n})^n en=(1+n1)n

e n n + 1 = 1 ⋅ ( 1 + 1 n ) ⋅ ( 1 + 1 n ) ⋅ . . . ⋅ ( 1 + 1 n ) n + 1 ≤ 1 + ( 1 + 1 n ) + ( 1 + 1 n ) + . . . + ( 1 + 1 n ) n + 1 = 1 + n ( 1 + 1 n ) n + 1 = n + 2 n + 1 = ( 1 + 1 n + 1 ) = e n + 1 n + 1 \sqrt[n+1]{e_n}=\sqrt[n+1]{1\cdot(1+\frac{1}{n})\cdot(1+\frac{1}{n})\cdot...\cdot(1+\frac{1}{n})}\leq\frac{1+(1+\frac{1}{n})+(1+\frac{1}{n})+...+(1+\frac{1}{n})}{n+1}=\frac{1+n(1+\frac{1}{n})}{n+1}=\frac{n+2}{n+1}=(1+\frac{1}{n+1})=\sqrt[n+1]{e_{n+1}} n+1en =n+11(1+n1)(1+n1)...(1+n1) n+11+(1+n1)+(1+n1)+...+(1+n1)=n+11+n(1+n1)=n+1n+2=(1+n+11)=n+1en+1

∴ e n ≤ ( 1 + 1 n + 1 ) n + 1 = e n + 1 ⇒ e n ≤ e n + 1 ⇒ 单 增 \therefore e_n\leq(1+\frac{1}{n+1})^{n+1}=e_{n+1}\Rightarrow e_n\leq e_{n+1}\Rightarrow单增 en(1+n+11)n+1=en+1enen+1
②:证明有界
设 E n = ( 1 + 1 n ) n + 1 设E_n=(1+\frac{1}{n})^{n+1} En=(1+n1)n+1

E n n = ( 1 + 1 n ) 2 ⋅ ( 1 + 1 n ) ⋅ ( 1 + 1 n ) ⋅ . . . ⋅ ( 1 + 1 n ) n ≤ ( 1 + 1 n ) 2 + ( n − 1 ) ⋅ ( 1 + 1 n ) n = 1 + n 3 − 1 n 3 ( n − 1 ) < 1 + 1 n − 1 = E n − 1 n \sqrt[n]{E_n}=\sqrt[n]{(1+\frac{1}{n})^2\cdot(1+\frac{1}{n})\cdot(1+\frac{1}{n})\cdot...\cdot(1+\frac{1}{n})}\leq\frac{(1+\frac{1}{n})^2+(n-1)\cdot(1+\frac{1}{n})}{n}=1+\frac{n^3-1}{n^3(n-1)}<1+\frac{1}{n-1}=\sqrt[n]{E_{n-1}} nEn =n(1+n1)2(1+n1)(1+n1)...(1+n1) n(1+n1)2+(n1)(1+n1)=1+n3(n1)n31<1+n11=nEn1
∴ E n ≤ E n − 1 ≤ E n − 2 ≤ . . . ≤ E 1 \therefore E_n\leq E_{n-1}\leq E_{n-2}\leq...\leq E_1 EnEn1En2...E1

e n < E n ⇒ e n < E 1 ⇒ e n 有 上 界 e_n<E_n\Rightarrow e_n<E_1\Rightarrow e_n有上界 en<Enen<E1en
∴ 极 限 存 在 ( ✪ ω ✪ ) \therefore 极限存在(✪ω✪) (ω)

1.67(打星)

lim ⁡ n → ∞ n 2 ( a 1 n − a 1 n + 1 ) \lim_{n\to\infty}n^2(a^{\frac{1}{n}}-a^{\frac{1}{n+1}}) nlimn2(an1an+11)
这道题我无论怎么化,好像都化不出个什么样子来,看答案发现竟然是用中值定理来做的T_T
f ( x ) = a x f(x)=a^x f(x)=ax

a 1 n − a 1 n + 1 = ( 1 n − 1 n + 1 ) a ξ l n a a^{\frac{1}{n}}-a^{\frac{1}{n+1}}=(\frac{1}{n}-\frac{1}{n+1})a^{\xi}lna an1an+11=(n1n+11)aξlna
然后求了极限,答案里面不还有 ξ \xi ξ得哇,怎么办?
∵ ξ ∈ ( 1 n + 1 , 1 n ) \because \xi\in(\frac{1}{n+1},\frac{1}{n}) ξ(n+11,n1)
∴ ξ → 0 \therefore \xi\to0 ξ0

1.69

lim ⁡ n → ∞ c o s x 2 c o s x 4 . . . c o s x 2 n \lim_{n\to\infty}cos\frac{x}{2}cos\frac{x}{4}...cos\frac{x}{2^n} nlimcos2xcos4x...cos2nx
这道题以前应该做过的,就是分子分母同时乘上 s i n x 2 n sin\frac{x}{2^n} sin2nx,但是化了之后到底乘了多少个 1 2 \frac{1}{2} 21这里竟然搞错了T_T

1.77(打星)【求极限先斩后奏】

已 知 x 1 = 1 2 , 2 x n + 1 + x n 2 = 1 , 求 lim ⁡ n → ∞ x n 已知x_1=\frac{1}{2},2x_{n+1}+x_n^2=1,求\lim_{n\to\infty}x_n x1=21,2xn+1+xn2=1,nlimxn
哇~又学到了,这道题属于那种“先斩后奏”的,要先假设存在,并且强行求出极限
然后再假装正式地求出 lim ⁡ n → ∞ ∣ x n − A ∣ = 0 \lim_{n\to\infty}|x_n-A|=0 limnxnA=0来说明极限等于 A A A
首先在草稿纸上对这个等式 2 x n + 1 + x n 2 = 1 2x_{n+1}+x_n^2=1 2xn+1+xn2=1求极限得到 2 A + A 2 = 1 2A+A^2=1 2A+A2=1,然后 A A A解出来取合适的值(这里取舍要想一哈)

然后根据等式的变形 x n + 1 = 1 2 ( 1 − x n 2 ) x_{n+1}=\frac{1}{2}(1-x_n^2) xn+1=21(1xn2) 得出 A = 1 2 ( 1 − A 2 ) A=\frac{1}{2}(1-A^2) A=21(1A2)

然后两个式子相减,构造出 ∣ y n + 1 ∣ = k ∣ y n ∣ |y_{n+1}|=k|y_n| yn+1=kyn这种样子(不同的题凑的方式不同,感觉这里还不好弄)

∣ x n + 1 − A ∣ = 1 2 ∣ x n + A ∣ ∣ x n − A ∣ |x_{n+1}-A|=\frac{1}{2}|x_{n}+A||x_n-A| xn+1A=21xn+AxnA

这道题就是令 y n + 1 = x n + 1 − A , 令 k = 1 2 ∣ x n + A ∣ y_{n+1}=x_{n+1}-A,令k=\frac{1}{2}|x_{n}+A| yn+1=xn+1A,k=21xn+A

然后就是这种必须掌握的套路了
∣ y n + 1 ∣ = k ∣ y n ∣ = k 2 ∣ y n − 1 ∣ = . . . = k n ∣ y 1 ∣ |y_{n+1}|=k|y_n|=k^2|y_{n-1}|=...=k^n|y_1| yn+1=kyn=k2yn1=...=kny1
然后计算 k k k的范围,算出来肯定是要小于 1 1 1 的,所以 k n → 0 k^n\to0 kn0

∴ lim ⁡ n → ∞ ∣ y n ∣ = 0 \therefore \lim_{n\to\infty}|y_n|=0 limnyn=0
即: lim ⁡ n → ∞ x n = A \lim_{n\to\infty}x_n=A limnxn=A

1.80【证明题】

a ≤ x ≤ b , a ≤ f ( x ) ≤ b , 且 ∀ x 1 , x 2 ∈ [ a , b ] 有 ∣ f ( x 2 ) − f ( x 1 ) ∣ = k ∣ x 2 − x 1 ∣ , k < 1 a\leq x\leq b,a\leq f(x)\leq b,且\forall x_1,x_2\in[a,b]有|f(x_2)-f(x_1)|=k|x_2-x_1|,k<1 axb,af(x)b,x1,x2[a,b]f(x2)f(x1)=kx2x1,k<1
( 1 ) 证 明 : ∃ 唯 一 ξ 使 得 f ( ξ ) = ξ (1)证明:\exist 唯一\xi使得f(\xi)=\xi (1)ξ使f(ξ)=ξ

移项一哈就是 f ( ξ ) − ξ = 0 f(\xi)-\xi=0 f(ξ)ξ=0,也就是证明 g ( x ) = f ( x ) − x g(x)=f(x)-x g(x)=f(x)x在区间内有唯一零点
那么按照老套路就是找到异号的两个端点就能证明存在,这里 g ( a ) ≥ 0 , g ( b ) ≤ 0 g(a)\geq0,g(b)\leq0 g(a)0,g(b)0,答案是不是写反了?
然后证明唯一性就是证明他单调,但是这道题没办法证明单调,但是跟普通的题相比多了个条件,肯定要把这个条件用上

证明唯一性:反证法
假如还存在一个 η \eta η使得 f ( η ) = η f(\eta)=\eta f(η)=η
那么 f ( ξ ) − f ( η ) = ξ − η f(\xi)-f(\eta)=\xi-\eta f(ξ)f(η)=ξη
∣ ξ − η ∣ = f ( ξ ) − f ( η ) = k ∣ ξ − η ∣ ⇒ ∣ ξ − η ∣ ( 1 − k ) = 0 ⇒ k = 1 |\xi-\eta|=f(\xi)-f(\eta)=k|\xi-\eta|\Rightarrow |\xi-\eta|(1-k)=0\Rightarrow k=1 ξη=f(ξ)f(η)=kξηξη(1k)=0k=1
k < 1 k<1 k<1所以矛盾
( 2 ) 对 于 任 意 的 x 1 ∈ [ a , b ] , x n + 1 = f ( x n ) , 证 明 lim ⁡ n → ∞ x n 存 在 , 且 lim ⁡ n → ∞ x n = ξ (2)对于任意的x_1\in[a,b],x_{n+1}=f(x_n),证明\lim_{n\to\infty}x_n存在,且\lim_{n\to\infty}x_n=\xi (2)x1[a,b],xn+1=f(xn),nlimxn,nlimxn=ξ
这个也有种先斩后奏的思想
x n 的 极 限 等 于 ξ x_n的极限等于\xi xnξ,那么 x n − ξ 的 极 限 就 该 等 于 0 x_n-\xi的极限就该等于0 xnξ0

因此就来求 lim ⁡ n → ∞ ( x n − ξ ) \lim_{n\to\infty}(x_n-\xi) limn(xnξ)

而根据所给的 x n + 1 = f ( x n ) x_{n+1}=f(x_n) xn+1=f(xn)的条件,就阔以一层一层变回去

∣ x n − ξ ∣ = ∣ f ( x n − 1 ) − f ( ξ ) ∣ = 再 用 题 干 的 条 件 k ∣ x n − 1 − ξ ∣ = . . . = k n − 1 ∣ x 1 − ξ ∣ = 0 |x_n-\xi|=|f(x_{n-1})-f(\xi)|\stackrel{再用题干的条件}{=}k|x_{n-1}-\xi|=...=k^{n-1}|x_1-\xi|=0 xnξ=f(xn1)f(ξ)=kxn1ξ=...=kn1x1ξ=0

这样极限就求出来了,并且也说明了极限存在

1.81

就是求有理数的系数 与无理数的系数 的比值的极限
( 2 + 2 ) n = A n + 2 B n , 求 lim ⁡ n → ∞ A n B n (2+\sqrt{2})^n=A_n+\sqrt{2}B_n,求\lim_{n\to\infty}\frac{A_n}{B_n} (2+2 )n=An+2 Bn,nlimBnAn
要先找到关系式,一开始还没反应过来QAQ
A n + 2 B n = ( 2 + 2 ) ( A n − 1 + 2 B n − 1 ) = 2 ( A n − 1 + B n − 1 ) + 2 ( A n − 1 + 2 B n − 1 ) A_n+\sqrt{2}B_n=(2+\sqrt{2})(A_{n-1}+\sqrt{2}B_{n-1})=2(A_{n-1}+B_{n-1})+\sqrt{2}(A_{n-1}+2B_{n-1}) An+2 Bn=(2+2 )(An1+2 Bn1)=2(An1+Bn1)+2 (An1+2Bn1)
∴ { A n = 2 ( A n − 1 + B n − 1 ) B n = ( A n − 1 + 2 B n − 1 ) \therefore \left\{\begin{matrix} A_n=2(A_{n-1}+B_{n-1})\\ \\ B_n=(A_{n-1}+2B_{n-1}) \end{matrix}\right. An=2(An1+Bn1)Bn=(An1+2Bn1)

∴ A n B n = 2 ( A n − 1 + B n − 1 ) ( A n − 1 + 2 B n − 1 ) = = = = = = 还 要 再 转 换 一 哈 2 ( A n − 1 B n − 1 ) + 1 A n − 1 B n − 1 + 2 \therefore \frac{A_n}{B_n}=\frac{2(A_{n-1}+B_{n-1})}{(A_{n-1}+2B_{n-1})}\stackrel{还要再转换一哈}{======}\frac{2(\frac{A_{n-1}}{B_{n-1}})+1}{\frac{A_{n-1}}{B_{n-1}}+2} BnAn=(An1+2Bn1)2(An1+Bn1)======Bn1An1+22(Bn1An1)+1
然 后 就 领 A n B n = x n 然后就领\frac{A_n}{B_n}=x_n BnAn=xn就好做了
得到的关系式就是:
x n = 2 x n − 1 + 1 x n − 1 + 2 x_n=\frac{2x_{n-1}+1}{x_{n-1}+2} xn=xn1+22xn1+1
做 差 : x n + 1 − x n = 2 ( x n − x n − 1 ) ( x n − 1 + 2 ) ( x n + 2 ) 做差:x_{n+1}-x_{n}=\frac{2\left(x_{n}-x_{n-1}\right)}{\left(x_{n-1}+2\right)\left(x_{n}+2\right)} :xn+1xn=(xn1+2)(xn+2)2(xnxn1),与分子同号,说明单调
然后 x n > 0 x_n>0 xn>0能理解, x n < 2 x_n<2 xn<2是把上面的关系式化简成 x n = 2 − 1 x n − 1 + 2 x_n=2-\frac{1}{x_{n-1}+2} xn=2xn1+21,这样就能看出了因此极限存在
然后就设出来反解出来

1.82【函数迭代】

0 ≤ f ( x ) ≤ x , x ∈ [ 0 , + ∞ ) , a 1 ≥ 0 , a n + 1 = f ( a n ) ( 1 ) 求 证 : { a n } 收 敛 ( 2 ) 证 明 : 设 lim ⁡ n → ∞ a n = t , 则 有 f ( t ) = t ( 3 ) 证 明 : 若 条 件 改 为 0 ≤ f ( x ) < x , x ∈ ( 0 , + ∞ ) , 则 t = 0 0\leq f(x)\leq x,x\in[0,+\infty),a_1\geq0,a_{n+1}=f(a_n)\\ (1)求证:\{a_n\}收敛\\ (2)证明:设\lim_{n\to\infty}a_n=t,则有f(t)=t\\ (3)证明:若条件改为0\leq f(x)<x,x\in(0,+\infty),则t=0 0f(x)x,x[0,+),a10,an+1=f(an)(1){an}(2)nliman=t,f(t)=t(3)0f(x)<x,x(0,+),t=0

(1)

∵ f ( x ) ≤ x ⇒ f ( a n ) ≤ a n \because f(x)\leq x\Rightarrow f(a_n)\leq a_n f(x)xf(an)an
∵ f ( a n ) = a n + 1 ⇒ a n + 1 ≤ a n ⇒ a n 单 减 \because f(a_n)=a_{n+1}\Rightarrow a_{n+1}\leq a_n\Rightarrow a_n单减 f(an)=an+1an+1anan
∵ x ≥ 0 ⇒ 有 下 界 \because x\geq0\Rightarrow 有下界 x0
∴ 收 敛 \therefore 收敛

(2)

f ( t ) = f ( lim ⁡ n → ∞ a n ) = lim ⁡ n → ∞ f ( a n ) = lim ⁡ n → ∞ a n + 1 = t f(t)=f(\lim_{n\to\infty}a_n)=\lim_{n\to\infty}f(a_n)=\lim_{n\to\infty}a_{{n+1}}=t f(t)=f(limnan)=limnf(an)=limnan+1=t
其 中 f ( lim ⁡ n → ∞ a n ) = lim ⁡ n → ∞ f ( a n ) 我 懵 逼 了 一 哈 ( ` ・ ω ・ ´ ) , 然 后 觉 得 好 像 有 道 理 其中f(\lim_{n\to\infty}a_n)=\lim_{n\to\infty}f(a_n)我懵逼了一哈(`・ω・´),然后觉得好像有道理 f(limnan)=limnf(an)(ω´),

(3)

大概就是说,如果能等于,那就迭代到自变量和因变量相等那一点
如果不能等于,那就只能迭代到0

1.83

已 知 f ( x ) = x + l n ( 2 − x ) 有 最 大 值 f ( 1 ) = 1 , x 1 = l n 2 , x n = ∑ i = 2 n l n ( 2 − x i ) , 证 明 : lim ⁡ n → ∞ x n 极 限 存 在 并 求 值 已知f(x)=x+ln(2-x)有最大值f(1)=1,x_1=ln2,x_n=\sum_{i=2}^nln(2-x_i),证明:\lim_{n\to\infty}x_n极限存在并求值 f(x)=x+ln(2x)f(1)=1,x1=ln2,xn=i=2nln(2xi),:nlimxn

所给的条件就是第一问,一般第一问都是为第二问做铺垫的,我就没发现这个

x n = ∑ i = 2 n l n ( 2 − x i ) = x n − 1 + l n ( 2 − x n − 1 ) x_n=\sum_{i=2}^nln(2-x_i)=x_{n-1}+ln(2-x_{n-1}) xn=i=2nln(2xi)=xn1+ln(2xn1)

这个我都没看出来T_T,这样就找到了递推关系,并且这个递推关系长得就和我们的条件一样,所以写出来就是

x n = f ( x n − 1 ) x_n=f(x_{n-1}) xn=f(xn1)

f ( x ) f(x) f(x)有最大值,说明 x n x_n xn有上界,于是第一个条件就出来了,再证明单增就行了

x n − x n − 1 = l n ( 2 − x n − 1 ) > 0 x_n-x_{n-1}=ln(2-x_{n-1})>0 xnxn1=ln(2xn1)>0所以单增也出来了,之后就好做了

1.84

x 1 = 1 , x n = ∫ 0 1 m i n ( x , x n − 1 ) d x , 证 明 lim ⁡ n → ∞ 存 在 并 求 值 x_1=1,x_n=\int_0^1min(x,x_{n-1})dx,证明\lim_{n\to\infty}存在并求值 x1=1,xn=01min(x,xn1)dx,nlim

这个 m i n min min操作一开始会有点懵逼,写几项试一试喃
x 2 = ∫ 0 1 m i n ( x , 1 ) d x = ∫ 0 1 x d x = 1 2 x_2=\int_0^1min(x,1)dx=\int_0^1xdx=\frac{1}{2} x2=01min(x,1)dx=01xdx=21

x 3 = ∫ 0 1 2 x d x + ∫ 1 2 1 1 2 d x = 3 8 x_3=\int_0^{\frac{1}{2}}xdx+\int_{\frac{1}{2}}^1\frac{1}{2}dx=\frac{3}{8} x3=021xdx+21121dx=83

会发现递推关系是这样 x n = ∫ 0 x n − 1 x d x + ∫ x n − 1 1 x n − 1 d x = x n − 1 − 1 2 x n − 1 2 x_n=\int_0^{x_{n-1}}xdx+\int_{x_{n-1}}^1x_{n-1}dx=x_{n-1}-\frac{1}{2}x_{n-1}^2 xn=0xn1xdx+xn11xn1dx=xn121xn12

单调性倒是一眼就看出来了,可是有下界还是要推一推的

∵ 单 调 ∴ x n − 1 < x 1 = 1 \because 单调\therefore x_{n-1}<x_1=1 xn1<x1=1

∴ x n − 1 > x n − 1 2 > x n − 1 2 2 ⇒ x n − 1 > x n − 1 2 ⇒ x n − 1 − x n − 1 2 > 0 ⇒ x n > 0 ⇒ 有 下 界 \therefore x_{n-1}>x_{n-1}^2>\frac{x_{n-1}^2}{2}\Rightarrow x_{n-1}>x_{n-1}^2\Rightarrow x_{n-1}-x_{n-1}^2>0\Rightarrow x_n>0\Rightarrow 有下界 xn1>xn12>2xn12xn1>xn12xn1xn12>0xn>0

1.87(多看)【证明题】

( 1 ) 证 明 : 方 程 e x + x 2 n + 1 = 0 在 x ∈ ( − 1 , 0 ) 内 有 唯 一 实 根 x n (1)证明:方程e^x+x^{2n+1}=0在x\in(-1,0)内有唯一实根x_n (1)ex+x2n+1=0x(1,0)xn
就是证 f n ( x ) = e x + x 2 n + 1 f_n(x)=e^x+x^{2n+1} fn(x)=ex+x2n+1单增并且两端异号,为后面题使用
( 2 ) 证 明 : lim ⁡ n → ∞ x n 存 在 并 求 其 值 a (2)证明:\lim_{n\to\infty}x_n存在并求其值a (2)nlimxna
f n + 1 ( x ) = e x + x 2 ( n + 1 ) + 1 = e x + x 2 n + 1 ⋅ x 2 f_{n+1}(x)=e^{x}+x^{2(n+1)+1}=e^{x}+x^{2n+1}\cdot x^2 fn+1(x)=ex+x2(n+1)+1=ex+x2n+1x2

∵ x n + 1 是 f n + 1 ( x ) 的 根 ⇒ f n + 1 ( x n + 1 ) = 0 ⇒ e x n + 1 + x n + 1 2 n + 1 ⋅ x n + 1 2 = 0 \because x_{n+1}是f_{n+1}(x)的根\Rightarrow f_{n+1}(x_{n+1})=0\Rightarrow e^{x_{n+1}}+x_{n+1}^{2n+1}\cdot x_{n+1}^2=0 xn+1fn+1(x)fn+1(xn+1)=0exn+1+xn+12n+1xn+12=0

又 ∵ x n + 1 ∈ ( − 1 , 0 ) ⇒ x n + 1 2 ∈ ( 0 , 1 ) ⇒ x n + 1 2 < 1 又\because x_{n+1}\in(-1,0)\Rightarrow x_{n+1}^2\in(0,1)\Rightarrow x_{n+1}^2<1 xn+1(1,0)xn+12(0,1)xn+12<1

∴ e x n + 1 + x n + 1 2 n + 1 > e x n + 1 + x n + 1 2 n + 1 ⋅ x n + 1 2 \therefore e^{x_{n+1}}+x_{n+1}^{2n+1}>e^{x_{n+1}}+x_{n+1}^{2n+1}\cdot x_{n+1}^2 exn+1+xn+12n+1>exn+1+xn+12n+1xn+12(这里我应该没判断错吧,确实应该是大于,答案好像写错了)

∴ e x n + 1 + x n + 1 2 n + 1 > 0 \therefore e^{x_{n+1}}+x_{n+1}^{2n+1}>0 exn+1+xn+12n+1>0

而 x n 是 f n ( x ) 的 根 ⇒ f n ( x n ) = 0 ⇒ e x n + x n 2 n + 1 = 0 而x_n是f_n(x)的根\Rightarrow f_n(x_n)=0\Rightarrow e^{x_n}+x_n^{2n+1}=0 xnfn(x)fn(xn)=0exn+xn2n+1=0

∴ e x n + 1 + x n + 1 2 n + 1 > e x n + x n 2 n + 1 ⇒ x n + 1 > x n ⇒ x n 单 增 \therefore e^{x_{n+1}}+x_{n+1}^{2n+1}>e^{x_n}+x_n^{2n+1}\Rightarrow x_{n+1}>x_n\Rightarrow x_n单增 exn+1+xn+12n+1>exn+xn2n+1xn+1>xnxn

而 x n < 0 ⇒ 有 上 界 ⇒ 极 限 存 在 而x_n<0\Rightarrow 有上界\Rightarrow 极限存在 xn<0

然后由 e x n + x n 2 n + 1 = 0 阔 以 化 出 ⇒ x n = ( 2 n + 1 ) l n ( − x n ) , 然 后 同 时 求 极 限 e^{x_n}+x_n^{2n+1}=0阔以化出\Rightarrow x_n=(2n+1)ln(-x_n),然后同时求极限 exn+xn2n+1=0xn=(2n+1)ln(xn),

这题长得还有点怪。。因为求极限的话右边是 ∞ \infty 了,所以移项到左边,让左边等于0
 ̄へ ̄(有点无语)

a 2 n + 1 = l n ( − a ) \frac{a}{2n+1}=ln(-a) 2n+1a=ln(a)
然后 a 2 n + 1 = 0 ⇒ l n ( − a ) = 0 ⇒ a = − 1 \frac{a}{2n+1}=0\Rightarrow ln(-a)=0\Rightarrow a=-1 2n+1a=0ln(a)=0a=1

( 3 ) 求 lim ⁡ n → ∞    n ( x n − a ) (3)求\lim_{n\to\infty}\ \ n(x_n-a) (3)nlim  n(xna)
由 上 题 知 : x n = ( 2 n + 1 ) l n ( − x n ) , 但 是 这 个 形 式 对 解 题 不 方 便 , 所 以 把 右 边 的 x n 反 解 出 来 : 由上题知:x_n=(2n+1)ln(-x_n),但是这个形式对解题不方便,所以把右边的x_n反解出来: :xn=(2n+1)ln(xn),便,xn:
x n = − e x n 2 n + 1 x_n=-e^{\frac{x_n}{2n+1}} xn=e2n+1xn
∴ n ( x n − a ) = n ( 1 − e x n 2 n + 1 ) \therefore n(x_n-a)=n(1-e^{\frac{x_n}{2n+1}}) n(xna)=n(1e2n+1xn)
然后求极限,有 e f ( x ) − 1 这 种 形 式 并 且 满 足 f ( x ) 趋 向 0 的 条 件 , 比 较 好 求 e^{f(x)-1}这种形式并且满足f(x)趋向0的条件,比较好求 ef(x)1f(x)0

1.90(放缩夹逼)

已 知 0 < t a n 2 x − x 2 < x 4 , x n = ∑ k = 1 n t a n 2 1 n + k , 求 lim ⁡ n → ∞ x n 已知0<tan^2x-x^2<x^4,x_n=\sum_{k=1}^ntan^2\frac{1}{\sqrt{n+k}},求\lim_{n\to\infty}x_n 0<tan2xx2<x4,xn=k=1ntan2n+k 1,nlimxn
这道题放缩很厉害呀~
I = t a n 2 1 n + k I=tan^2\frac{1}{\sqrt{n+k}} I=tan2n+k 1
很明显阔以化成

1 n + k < I < 1 n + k + 1 ( n + k ) 2 \frac{1}{n+k}<I<\frac{1}{n+k}+\frac{1}{(n+k)^2} n+k1<I<n+k1+(n+k)21

我就只能弄到这儿了

答案还把右边放缩了一哈,才能够计算出来

1 n + k < I < 1 n + k + 1 n 2 \frac{1}{n+k}<I<\frac{1}{n+k}+\frac{1}{n^2} n+k1<I<n+k1+n21

然后,秀操作的时候来了

lim ⁡ n → ∞ ∑ k = 1 n 1 n + k = lim ⁡ n → ∞ ∑ k = 1 n 1 1 + k n 1 n = ∫ 0 1 1 1 + x d x = l n 2 \lim_{n\to\infty}\sum_{k=1}^n\frac{1}{n+k}=\lim_{n\to\infty}\sum_{k=1}^n\frac{1}{1+\frac{k}{n}}\frac{1}{n}=\int_0^1\frac{1}{1+x}dx=ln2 nlimk=1nn+k1=nlimk=1n1+nk1n1=011+x1dx=ln2

然后右边只是多了个 lim ⁡ n → ∞ ∑ k = 1 n 1 n 2 = lim ⁡ n → ∞ 1 n = 0 \lim_{n\to\infty}\sum_{k=1}^n\frac{1}{n^2}=\lim_{n\to\infty}\frac{1}{n}=0 limnk=1nn21=limnn1=0,哇~

所以夹逼出来就是 l n 2 ln2 ln2

1.91

证 明 : f ( x ) = ( n x + 1 ) − 1 x 单 增 , x ∈ ( 0 , + ∞ ) 证明:f(x)=(n^x+1)^{-\frac{1}{x}}单增,x\in(0,+\infty) f(x)=(nx+1)x1,x(0,+)
如果直接求导会很复杂,因此取个对数,因为对数是增函数,所以单调性不会变
g ( x ) = l n f ( x ) = − 1 x l n ( n x + 1 ) g(x)=lnf(x)=-\frac{1}{x}ln(n^x+1) g(x)=lnf(x)=x1ln(nx+1)

g ′ ( x ) = 1 x 2 l n ( n x + 1 ) − 1 x n x l n n n x + 1 g'(x)=\frac{1}{x^2}ln(n^x+1)-\frac{1}{x}\frac{n^xlnn}{n^x+1} g(x)=x21ln(nx+1)x1nx+1nxlnn

到这里,如果直接令 g ′ ( x ) > 0 g'(x)>0 g(x)>0又很难解出 x x x的范围

没想到竟然是放缩。。。

g ′ ( x ) = 1 x 2 l n ( n x + 1 ) − 1 x n x l n n n x + 1 > 1 x 2 l n ( n x ) − 1 x ( n x + 1 ) l n n n x + 1 = 1 x l n n − 1 x l n n = 0 g'(x)=\frac{1}{x^2}ln(n^x+1)-\frac{1}{x}\frac{n^xlnn}{n^x+1}>\frac{1}{x^2}ln(n^x)-\frac{1}{x}\frac{(n^x+1)lnn}{n^x+1}=\frac{1}{x}lnn-\frac{1}{x}lnn=0 g(x)=x21ln(nx+1)x1nx+1nxlnn>x21ln(nx)x1nx+1(nx+1)lnn=x1lnnx1lnn=0

哇地一声哭了出来(╥╯^╰╥)

x n = ∑ k = 1 n ( n k + 1 ) − 1 k , 求 lim ⁡ n → ∞ x n x_n=\sum_{k=1}^n(n^k+1)^{-\frac{1}{k}},求\lim_{n\to\infty}x_n xn=k=1n(nk+1)k1,nlimxn

要用到第二问的结论
x n x_n xn相当于 ∑ k = 1 n f ( k ) \sum_{k=1^n}f(k) k=1nf(k)

∵ 1 ≤ k ≤ n 且 f ( x ) 单 增 \because 1\leq k\leq n且f(x)单增 1knf(x)

∴ f ( 1 ) ≤ f ( k ) ≤ f ( n ) ⇒ ∑ k = 1 n f ( 1 ) ≤ x n ≤ ∑ k = 1 n f ( n ) \therefore f(1)\leq f(k)\leq f(n)\Rightarrow \sum_{k=1}^nf(1)\leq x_n\leq \sum_{k=1}^nf(n) f(1)f(k)f(n)k=1nf(1)xnk=1nf(n)

左边很好求极限,右边就还要变形一哈~

lim ⁡ n → ∞ ∑ k = 1 n 1 ( n n + 1 ) 1 n = lim ⁡ n → ∞ n ( n n + 1 ) 1 n , 分 子 分 母 同 时 除 以 n , = lim ⁡ n → ∞ 1 ( 1 + 1 n n ) 1 n = 1 \lim_{n\to\infty}\sum_{k=1}^n\frac{1}{(n^n+1)^{\frac{1}{n}}}=\lim_{n\to\infty}\frac{n}{(n^n+1)^{\frac{1}{n}}},分子分母同时除以n,=\lim_{n\to\infty}\frac{1}{(1+\frac{1}{n^n})^{\frac{1}{n}}}=1 nlimk=1n(nn+1)n11=nlim(nn+1)n1n,n,=nlim(1+nn1)n11=1

1.101

求 f ( x ) = lim ⁡ n → ∞ e 1 x a r c t a n 1 1 + x x 2 + e n x 的 间 断 点 以 及 类 型 求f(x)=\lim_{n\to\infty}\frac{e^{\frac{1}{x}}arctan\frac{1}{1+x}}{x^2+e^{nx}}的间断点以及类型 f(x)=nlimx2+enxex1arctan1+x1

这道题我做第二遍的时候也没反应过来QAQ,一来就直接求的,然后就遇到问题了,就是分母的 e n x e^{nx} enx x → 0 , n → ∞ x\to0,n\to\infty x0,n,那 n x → ? nx\to? nx?

这道题先要分段
f ( x ) = { 0 , x > 0 e 1 x arctan ⁡ 1 1 + x x 2 , x < 0 f ( x ) = \left\{ \begin{array} { l l } { 0 , } & { x > 0 } \\ { \frac { \mathrm { e } ^ { \frac { 1 } { x } } \arctan \frac { 1 } { 1 + x } } { x ^ { 2 } } , } & { x < 0 } \end{array} \right. f(x)={0,x2ex1arctan1+x1,x>0x<0
然后做才好做
但是当 x > 0 x>0 x>0的时候,为啥就是0喃?
万一 x → 0 x\to0 x0的时候,那 e n x e^nx enx也就不知道啊,我还是不理解T_T

本书精心命制和整合了大约1000考研数学复习的目,其主要来源是: (1)与考研数学命密切相关的重要资料.这里包括考研数学命前的全国征、部分考研的备考(所谓考研数学B卷考)、命人退下来以后命制的目、某些全国大学数学教学基地的考试库等,这些一般会综合了多个知识点,有一定的难度和区分度. (2)前苏联、全国、各省市大学生数学竞赛试的改编.对经典的大学数学竞赛如何进行改编,使其适合考研的风格和特点,这既是对未来考的预测(因为这些竞赛中有很多目是“潜在的考试”),也是本书的一大特色.试改编是颇费一番周折的,本书中一些重要目后的“注”,看似外之话,但是字斟句酌、涵义深刻,请读者仔细品味,必会有所收获.当然,基于竞赛基础,这些一般也会是综合,难度高、区分度大. (3)作者在一线教学中编写和积累的经典目.这里,有些目考查的是非常重要的基础知识,有些目考查的是学生易错的、易混淆的知识,还有些目,本应是在课堂上讲授给学生的,但是无奈于课堂时间有限,很多精彩的好题没有机会在课上详细解释,也将此选编到本书中,供学生课后巩固所学、增长见识之用.同时也给没有上我的课程的读者提供一个有价值的习资料.这里的目除了有一定难度的综合外,还有些简单,难度不高,但对学生的区分是明显的.
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值