一.极限、连续
函数极限
容易犯的错误:
①:虽然求极限阔以把加减号拆开然后分别求极限,但是这个是有条件的,比如这种就不能
lim
x
→
0
1
−
x
2
c
o
s
2
x
−
1
x
2
\lim_{x\to0}\frac{\sqrt{1-x^2}cos^2x-1}{x^2}
x→0limx21−x2cos2x−1
这个如果拆开了就是
∞
−
∞
\infty-\infty
∞−∞ 属于不能判断的情况,就不能拆
其实不管加减乘除,实际上就是未定式不能拆开,有两种
∞
−
∞
和
0
−
0
\infty-\infty和0-0
∞−∞和0−0说不清楚是等于多少,而其他的比如说
∞
±
0
\infty\pm0
∞±0肯定是等于
∞
\infty
∞的,0根本没影响
但是比如像1.22的这道题属于
∞
−
∞
+
0
\infty-\infty+0
∞−∞+0的这种
lim
x
→
∞
(
x
3
+
x
2
)
e
1
x
−
1
+
x
6
−
t
a
n
1
x
⋅
e
1
x
\lim_{x\to\infty}(x^3+\frac{x}{2})e^{\frac{1}{x}}-\sqrt{1+x^6}-tan\frac{1}{x}\cdot e^{\frac{1}{x}}
x→∞lim(x3+2x)ex1−1+x6−tanx1⋅ex1
后面这项
t
a
n
1
x
⋅
e
1
x
tan\frac{1}{x}\cdot e^{\frac{1}{x}}
tanx1⋅ex1答案直接就不要了是为啥喃?
按道理来说
∞
−
∞
\infty-\infty
∞−∞可能是0,然后三项就变成两项
0
−
0
0-0
0−0又是未定式,这样就不能省略,而答案省略了却对了的原因是因为后面算出来
∞
−
∞
=
∞
\infty-\infty=\infty
∞−∞=∞,所以才对
②:用洛必达法则的时候:右存在,则左存在,但左存在,不一定右存在
lim
x
→
0
x
2
s
i
n
1
x
x
=
x
s
i
n
1
x
=
0
\lim_{x\to0}\frac{x^2sin\frac{1}{x}}{x}=xsin\frac{1}{x}=0
x→0limxx2sinx1=xsinx1=0
但是用洛必达
lim
x
→
0
x
2
s
i
n
1
x
x
=
2
x
s
i
n
1
x
−
c
o
s
1
x
,
极
限
就
不
存
在
\lim_{x\to0}\frac{x^2sin\frac{1}{x}}{x}=2xsin\frac{1}{x}-cos\frac{1}{x},极限就不存在
x→0limxx2sinx1=2xsinx1−cosx1,极限就不存在
③:泰勒展开的时候,阶数要展够,比如这道
lim
x
→
0
(
1
+
x
2
)
(
1
−
c
o
s
2
x
)
−
2
x
2
x
4
\lim_{x\to0}\frac{(1+x^2)(1-cos2x)-2x^2}{x^4}
x→0limx4(1+x2)(1−cos2x)−2x2
答案是
4
3
\frac{4}{3}
34
④:要求 f ( 0 ) = 0 f(0)=0 f(0)=0
lim
x
→
0
e
1
−
1
2
x
−
e
1
−
x
x
\lim_{x\to0}\frac{e^{1-\frac{1}{2}x}-e^{1-x}}{x}
x→0limxe1−21x−e1−x
这个求极限的时候我直接把
e
1
−
1
2
x
和
e
1
−
x
展
开
了
e^{1-\frac{1}{2}x}和e^{1-x}展开了
e1−21x和e1−x展开了
然后化成 1 + 1 − 1 2 x − ( 1 + 1 − x ) x = 1 2 \frac{1+1-\frac{1}{2}x-(1+1-x)}{x}=\frac{1}{2} x1+1−21x−(1+1−x)=21就错了
因为我们经常用的泰勒展开(也就是麦克劳林)是在 x 0 = 0 x_0=0 x0=0的地方展开的,因此 e f ( x ) e^{f(x)} ef(x)要展开的话得要求 f ( x ) = 0 f(x)=0 f(x)=0
因此如果这道题要展开的话就阔以把常数提出来变成 lim x → 0 e ( e − 1 2 x − e − x ) x \lim_{x\to0}\frac{e(e^{-\frac{1}{2}x}-e^{-x})}{x} limx→0xe(e−21x−e−x)这样就能够展开了,答案等于 e 2 \frac{e}{2} 2e
⑤:要求 f ( x ) 在 0 点 有 意 义 f(x)在0点有意义 f(x)在0点有意义
我
还
犯
过
的
错
误
就
是
把
e
1
x
这
东
西
展
开
了
我还犯过的错误就是把\ e^{\frac{1}{x}}\ 这东西展开了
我还犯过的错误就是把 ex1 这东西展开了
展开变成
e
1
x
=
1
+
1
x
+
O
(
1
x
)
e^{\frac{1}{x}=1+\frac{1}{x}+O(\frac{1}{x})}
ex1=1+x1+O(x1),当x趋向零的时候,
O
(
1
x
)
O(\frac{1}{x})
O(x1)这个不叫高阶无穷小了,而变成高阶无穷大了,因此在求极限中当然不能忽略啦~
⑥:非常非常非常经典的一道题
证
明
lim
x
→
∞
e
x
(
1
+
1
x
)
x
2
=
e
1
2
证明\lim_{x\to\infty}\frac{e^x}{(1+\frac{1}{x})^{x^2}}=e^{\frac{1}{2}}
证明x→∞lim(1+x1)x2ex=e21
常见错误就是先算
(
1
+
1
x
)
x
求
极
限
=
e
(1+\frac{1}{x})^x求极限=e
(1+x1)x求极限=e,所以
(
1
+
1
x
)
x
2
=
e
x
(1+\frac{1}{x})^{x^2}=e^x
(1+x1)x2=ex,错误原因是求极限是个整体,不能一部分求一部分不求
但是这样做为啥也不对喃?
lim
x
→
∞
(
1
+
1
x
)
x
2
=
lim
x
→
∞
e
x
2
l
n
(
1
+
1
x
)
=
e
x
2
⋅
1
x
=
e
x
\lim_{x\to\infty}(1+\frac{1}{x})^{x^2}=\lim_{x\to\infty}e^{x^2ln(1+\frac{1}{x})}=e^{x^2\cdot\frac{1}{x}}=e^x
x→∞lim(1+x1)x2=x→∞limex2ln(1+x1)=ex2⋅x1=ex
这个的原因应该是展开精度不够,上面的
l
n
(
1
+
1
x
)
∼
1
x
ln(1+\frac{1}{x})\sim\frac{1}{x}
ln(1+x1)∼x1相当于展开到第一项,精度不够,如果多写几项就能发现
lim
x
→
∞
e
x
2
l
n
(
1
+
1
x
)
=
e
x
2
(
1
x
−
1
2
x
2
+
O
(
1
x
2
)
)
=
e
x
⋅
e
−
1
2
⋅
e
O
(
1
x
2
)
)
=
e
x
⋅
e
−
1
2
⋅
1
\lim_{x\to\infty}e^{x^2ln(1+\frac{1}{x})}=e^{x^2(\frac{1}{x}-\frac{1}{2x^2}+O(\frac{1}{x^2}))}=e^x\cdot e^{-\frac{1}{2}}\cdot e^{O(\frac{1}{x^2}))}=e^x\cdot e^{-\frac{1}{2}}\cdot 1
x→∞limex2ln(1+x1)=ex2(x1−2x21+O(x21))=ex⋅e−21⋅eO(x21))=ex⋅e−21⋅1
这样答案就对了
1.6
lim
x
→
0
(
3
+
2
t
a
n
x
)
x
−
3
x
3
s
i
n
2
x
+
x
3
c
o
s
1
x
\lim_{x\to 0}\frac{(3+2tanx)^x-3^x}{3sin^2x+x^3cos\frac{1}{x}}
x→0lim3sin2x+x3cosx1(3+2tanx)x−3x
就是分母这里有点不好搞
通过求极限
lim
x
→
0
x
3
c
o
s
1
x
3
s
i
n
2
x
=
1
3
x
c
o
s
x
=
0
\lim_{x\to0}\frac{x^3cos\frac{1}{x}}{3sin^2x}=\frac{1}{3}xcosx=0
limx→03sin2xx3cosx1=31xcosx=0发现
x
3
c
o
s
1
x
x^3cos\frac{1}{x}
x3cosx1 是
3
s
i
n
2
x
3sin^2x
3sin2x 的高阶无穷小,所以阔以直接省略掉,然后就好做了T_T
1.8
I
=
lim
x
→
0
∫
0
x
s
i
n
2
t
4
+
t
2
∫
0
x
(
t
+
1
−
1
)
d
t
d
t
I=\lim_{x\to0}\int_0^x\frac{sin2t}{\sqrt{4+t^2}\int_0^x(\sqrt{t+1}-1)dt}dt
I=x→0lim∫0x4+t2∫0x(t+1−1)dtsin2tdt
这道题是我见过的最奇怪的求极限的题,答案是用的洛必达???没懂怎么用的,分数的形式不是都没有嘛???
还是小波厉害~用的积分中值定理来化简的
先把里面的积分化简
I
=
lim
x
→
0
∫
0
x
s
i
n
2
t
4
+
t
2
(
η
+
1
−
1
)
∫
0
x
d
t
d
t
=
∫
0
x
s
i
n
2
t
4
+
t
2
(
η
+
1
−
1
)
x
d
t
再
把
外
面
的
积
分
化
简
=
s
i
n
2
ξ
4
+
ξ
2
(
η
+
1
−
1
)
x
∫
0
x
d
t
=
x
s
i
n
2
ξ
4
+
ξ
2
(
η
+
1
−
1
)
x
=
I=\lim_{x\to0}\int_0^x\frac{sin2t}{\sqrt{4+t^2}(\sqrt{\eta+1}-1)\int_0^xdt}dt=\int_0^x\frac{sin2t}{\sqrt{4+t^2}(\sqrt{\eta+1}-1)x}dt再把外面的积分化简=\frac{sin2\xi}{\sqrt{4+\xi^2}(\sqrt{\eta+1}-1)x}\int_0^xdt=\frac{xsin2\xi}{\sqrt{4+\xi^2}(\sqrt{\eta+1}-1)x}=
I=x→0lim∫0x4+t2(η+1−1)∫0xdtsin2tdt=∫0x4+t2(η+1−1)xsin2tdt再把外面的积分化简=4+ξ2(η+1−1)xsin2ξ∫0xdt=4+ξ2(η+1−1)xxsin2ξ=
∵ η ∈ ( 0 , x ) , ξ ∈ ( 0 , x ) \because \eta\in(0,x),\xi\in(0,x) ∵η∈(0,x),ξ∈(0,x)
∴
η
→
0
,
ξ
→
0
\therefore \eta\to0,\xi\to0
∴η→0,ξ→0
∴
I
=
x
⋅
2
ξ
2
(
η
+
1
−
1
)
x
=
x
⋅
2
ξ
2
1
2
η
x
=
2
ξ
η
=
2
\therefore I=\frac{x\cdot2\xi}{2(\sqrt{\eta+1}-1)x}=\frac{x\cdot2\xi}{2\frac{1}{2}\eta x}=\frac{2\xi}{\eta}=2
∴I=2(η+1−1)xx⋅2ξ=221ηxx⋅2ξ=η2ξ=2
哦哦我懂为啥阔以提出来了,还是小波给我说滴:
令
F
(
x
)
=
∫
0
x
(
t
+
1
−
1
)
d
t
令F(x)=\int_0^x(\sqrt{t+1}-1)dt
令F(x)=∫0x(t+1−1)dt
I = lim x → 0 ∫ 0 x s i n 2 t 4 + t 2 F ( x ) d t , 现 在 就 能 看 出 来 为 啥 阔 以 提 出 来 了 , 积 分 变 量 是 t , 所 以 F ( x ) 阔 以 提 出 来 , 然 后 就 阔 以 用 洛 必 达 了 I=\lim_{x\to0}\int_0^x\frac{sin2t}{\sqrt{4+t^2}F(x)}dt,现在就能看出来为啥阔以提出来了,积分变量是t,所以F(x)阔以提出来,然后就阔以用洛必达了 I=x→0lim∫0x4+t2F(x)sin2tdt,现在就能看出来为啥阔以提出来了,积分变量是t,所以F(x)阔以提出来,然后就阔以用洛必达了
1.22
lim
x
→
+
∞
[
(
x
3
+
x
2
−
t
a
n
1
x
)
e
1
x
−
1
+
x
6
]
\lim_{x\to+\infty}[(x^3+\frac{x}{2}-tan\frac{1}{x})e^{\frac{1}{x}}-\sqrt{1+x^6}]
x→+∞lim[(x3+2x−tanx1)ex1−1+x6]
答
案
是
变
成
这
样
:
lim
x
→
∞
(
x
3
+
x
2
)
e
1
x
−
1
+
x
6
−
t
a
n
1
x
⋅
e
1
x
,
然
后
面
这
项
t
a
n
1
x
⋅
e
1
x
答
案
直
接
就
不
要
了
答案是变成这样:\lim_{x\to\infty}(x^3+\frac{x}{2})e^{\frac{1}{x}}-\sqrt{1+x^6}-tan\frac{1}{x}\cdot e^{\frac{1}{x}},然后面这项tan\frac{1}{x}\cdot e^{\frac{1}{x}}答案直接就不要了
答案是变成这样:x→∞lim(x3+2x)ex1−1+x6−tanx1⋅ex1,然后面这项tanx1⋅ex1答案直接就不要了
按道理来说 ∞ − ∞ \infty-\infty ∞−∞可能是0,然后三项就变成两项 0 − 0 0-0 0−0又是未定式,这样就不能省略,而答案省略了却对了的原因是因为后面算出来 ∞ − ∞ = ∞ \infty-\infty=\infty ∞−∞=∞,所以才对
1.40(不常见题型)
设 α ≥ 5 , 则 k 是 多 少 , I = lim x → ∞ [ ( x α + 8 x 4 + 2 ) k − x ] 极 限 存 在 设\alpha\geq5,则k是多少,I=\lim_{x\to\infty}[(x^{\alpha}+8x^4+2)^k-x]极限存在 设α≥5,则k是多少,I=x→∞lim[(xα+8x4+2)k−x]极限存在
I
=
lim
t
→
0
(
1
+
8
t
α
−
4
)
k
−
t
k
α
−
1
t
k
α
I=\lim_{t\to0}\frac{(1+8t^{\alpha-4)^k-t^{k\alpha-1}}}{t^{k\alpha}}
I=t→0limtkα(1+8tα−4)k−tkα−1
然后强行说只有当
k
α
−
1
=
0
k\alpha-1=0
kα−1=0的时候,极限才存在
然后解出
k
=
1
α
k=\frac{1}{\alpha}
k=α1,再带进去求极限
这题感觉有点。。。怎么说喃,他要化成那种能比较方便地来求极限的那种形式,然后才能看出啥时候存在,啥时候不存在
1.42
lim
x
→
0
c
o
s
x
−
c
o
s
x
3
s
i
n
x
2
x
\lim_{x\to0}\frac{\sqrt{cosx}-\sqrt[3]{cosx}}{sinx^2x}
x→0limsinx2xcosx−3cosx
①换元,令
t
=
c
o
s
1
6
x
t=cos^{\frac{1}{6}}x
t=cos61x,然后用洛必达
② c o s x − c o s x 3 x 2 = ( c o s x − 1 ) − ( c o s x 3 − 1 ) x 2 \frac{\sqrt{cosx}-\sqrt[3]{cosx}}{x^2}=\frac{(\sqrt{cosx}-1)-(\sqrt[3]{cosx}-1)}{x^2} x2cosx−3cosx=x2(cosx−1)−(3cosx−1)
其中 c o s x − 1 = ( 1 + c o s x − 1 ) 1 2 − 1 ∼ 1 2 ( c o s x − 1 ) ∼ − 1 4 x 2 \sqrt{cosx}-1=(1+cosx-1)^\frac{1}{2}-1\sim\frac{1}{2}(cosx-1)\sim-\frac{1}{4}x^2 cosx−1=(1+cosx−1)21−1∼21(cosx−1)∼−41x2另外一个也类似
1.44(打星)
lim
x
→
0
1
−
c
o
s
x
⋅
c
o
s
2
x
⋅
c
o
s
3
x
3
x
2
\lim_{x\to 0}\frac{1-cosx\cdot \sqrt{cos2x}\cdot \sqrt[3]{cos3x}}{x^2}
x→0limx21−cosx⋅cos2x⋅3cos3x
这题真tm牛皮~
题1.42的换元以及变形都不能用了
没想到分子阔以化成这样
1
−
a
b
c
=
(
1
−
a
)
+
a
(
1
−
b
)
+
a
b
(
1
−
c
)
1-abc=(1-a)+a(1-b)+ab(1-c)
1−abc=(1−a)+a(1−b)+ab(1−c)
这样就能变形来做了
原来这道题是有题源的,原题为:
lim
x
→
0
1
−
c
o
s
x
⋅
c
o
s
2
x
⋅
c
o
s
3
x
3
⋅
.
.
.
⋅
c
o
s
n
x
n
x
2
\lim_{x\to 0}\frac{1-cosx\cdot \sqrt{cos2x}\cdot \sqrt[3]{cos3x}\cdot...\cdot\sqrt[n]{cosnx}}{x^2}
x→0limx21−cosx⋅cos2x⋅3cos3x⋅...⋅ncosnx
虽然题解是用洛必达,但要叫我来洛我肯定不愿意,这怎么求导嘛T_T,结果答案令我大吃一斤T_T还真能求导QAQ
令
f
(
x
)
=
c
o
s
x
⋅
c
o
s
2
x
⋅
c
o
s
3
x
3
⋅
.
.
.
⋅
c
o
s
n
x
n
=
e
l
n
f
(
x
)
f(x)=cosx\cdot \sqrt{cos2x}\cdot \sqrt[3]{cos3x}\cdot...\cdot\sqrt[n]{cosnx}=e^{lnf(x)}
f(x)=cosx⋅cos2x⋅3cos3x⋅...⋅ncosnx=elnf(x)
∴ f ′ ( x ) = e l n f ( x ) ⋅ [ l n f ( x ) ] ′ = f ( x ) ⋅ [ l n ( c o s x ) + l n ( c o s 2 x + . . . + l n ( c o s n x n ) ) ] ′ = f ( x ) ⋅ [ − t a n x − 1 2 t a n 2 x ⋅ 2 − . . . − 1 n t a n n x ⋅ n ] = − f ( x ) ⋅ ∑ k = 1 n t a n k x \therefore f'(x)=e^{lnf(x)}\cdot[lnf(x)]'=f(x)\cdot[ln(cosx)+ln(\sqrt{cos2x}+...+ln(\sqrt[n]{cosnx}))]'=f(x)\cdot[-tanx-\frac{1}{2}tan2x\cdot 2-...-\frac{1}{n}tannx\cdot n]=-f(x)\cdot\sum_{k=1}^ntankx ∴f′(x)=elnf(x)⋅[lnf(x)]′=f(x)⋅[ln(cosx)+ln(cos2x+...+ln(ncosnx))]′=f(x)⋅[−tanx−21tan2x⋅2−...−n1tannx⋅n]=−f(x)⋅k=1∑ntankx
∴ 原 式 求 洛 必 达 = − f ′ ( x ) 2 x = 1 2 ⋅ ∑ k = 1 n t a n k x x = 1 2 ⋅ ∑ k = 1 n k = n ( n + 1 ) 4 \therefore 原式求洛必达=\frac{-f'(x)}{2x}=\frac{1}{2}\frac{\cdot\sum_{k=1}^ntankx}{x}=\frac{1}{2}\cdot\sum_{k=1}^nk=\frac{n(n+1)}{4} ∴原式求洛必达=2x−f′(x)=21x⋅∑k=1ntankx=21⋅∑k=1nk=4n(n+1)
1.45(打星)【证明题】【放缩】
f
(
1
)
=
1
,
f
′
(
x
)
=
1
x
2
+
f
2
(
x
)
,
证
明
lim
x
→
∞
f
(
x
)
极
限
存
在
且
小
于
1
+
π
2
f(1)=1,f'(x)=\frac{1}{x^2+f^2(x)},证明\lim_{x\to\infty}f(x)极限存在且小于1+\frac{\pi}{2}
f(1)=1,f′(x)=x2+f2(x)1,证明x→∞limf(x)极限存在且小于1+2π
这种题就属于那种以前没见过的话就特别懵逼的题
∫ 1 x f ′ ( t ) d t = f ( x ) + c \int_1^xf'(t)dt=f(x)+c ∫1xf′(t)dt=f(x)+c
当 x = 1 时 ⇒ 0 = f ( 1 ) + c ⇒ c = − 1 x=1时\Rightarrow 0=f(1)+c\Rightarrow c=-1 x=1时⇒0=f(1)+c⇒c=−1
∴ f ( x ) − 1 = ∫ 1 x f ′ ( t ) d t = ∫ 1 x 1 t 2 + f 2 ( t ) d t \therefore f(x)-1=\int_1^xf'(t)dt=\int_1^x\frac{1}{t^2+f^2(t)}dt ∴f(x)−1=∫1xf′(t)dt=∫1xt2+f2(t)1dt
又 ∵ 1 x 2 + f 2 ( x ) > 0 又\because \frac{1}{x^2+f^2(x)}>0 又∵x2+f2(x)1>0
∴ f ′ ( x ) > 0 ⇒ f ( x ) 单 增 \therefore f'(x)>0\Rightarrow f(x)单增 ∴f′(x)>0⇒f(x)单增
∴ f ( x ) > = 1 , 在 x ∈ ( 1 , + ∞ ) \therefore f(x)>=1,在x\in(1,+\infty) ∴f(x)>=1,在x∈(1,+∞)
∴ 1 t 2 + f 2 ( t ) ≤ 1 t 2 + 1 ⇒ ∫ 1 x 1 t 2 + f 2 ( t ) d t ≤ ∫ 1 x 1 t 2 + 1 d t \therefore \frac{1}{t^2+f^2(t)}\leq\frac{1}{t^2+1}\Rightarrow\int_1^x\frac{1}{t^2+f^2(t)}dt\leq\int_1^x\frac{1}{t^2+1}dt ∴t2+f2(t)1≤t2+11⇒∫1xt2+f2(t)1dt≤∫1xt2+11dt
∴ f ( x ) − 1 = ∫ 1 x 1 t 2 + f 2 ( t ) d t ≤ ∫ 1 x 1 t 2 + 1 d t \therefore f(x)-1=\int_1^x\frac{1}{t^2+f^2(t)}dt\leq\int_1^x\frac{1}{t^2+1}dt ∴f(x)−1=∫1xt2+f2(t)1dt≤∫1xt2+11dt
即: f ( x ) ≤ 1 + ∫ 1 x 1 t 2 + 1 d t f(x)\leq1+\int_1^x\frac{1}{t^2+1}dt f(x)≤1+∫1xt2+11dt
再求个极限
lim
x
→
∞
f
(
x
)
≤
1
+
∫
1
∞
1
t
2
+
1
d
t
=
1
+
π
4
≤
1
+
π
2
\lim_{x\to\infty}f(x)\leq1+\int_1^{\infty}\frac{1}{t^2+1}dt=1+\frac{\pi}{4}\leq1+\frac{\pi}{2}
limx→∞f(x)≤1+∫1∞t2+11dt=1+4π≤1+2π
这道题中有
π
2
\frac{\pi}{2}
2π,求极限中好像只有
a
r
c
t
a
n
x
arctan\ x
arctan x才会出现
π
2
\frac{\pi}{2}
2π,所以再看有没有跟
a
r
c
t
a
n
x
arctan\ x
arctan x相关的
数列极限
例3
证
明
数
列
(
1
+
1
n
)
n
极
限
存
在
证明数列\ {(1+\frac{1}{n})^n}\ 极限存在
证明数列 (1+n1)n 极限存在
一般要证明极限存在都是要证明两个:单调、有界
这个的证明感觉很厉害,也是张宇18讲上面看到的
①:证明单增
设
e
n
=
(
1
+
1
n
)
n
设e_n=(1+\frac{1}{n})^n
设en=(1+n1)n
e n n + 1 = 1 ⋅ ( 1 + 1 n ) ⋅ ( 1 + 1 n ) ⋅ . . . ⋅ ( 1 + 1 n ) n + 1 ≤ 1 + ( 1 + 1 n ) + ( 1 + 1 n ) + . . . + ( 1 + 1 n ) n + 1 = 1 + n ( 1 + 1 n ) n + 1 = n + 2 n + 1 = ( 1 + 1 n + 1 ) = e n + 1 n + 1 \sqrt[n+1]{e_n}=\sqrt[n+1]{1\cdot(1+\frac{1}{n})\cdot(1+\frac{1}{n})\cdot...\cdot(1+\frac{1}{n})}\leq\frac{1+(1+\frac{1}{n})+(1+\frac{1}{n})+...+(1+\frac{1}{n})}{n+1}=\frac{1+n(1+\frac{1}{n})}{n+1}=\frac{n+2}{n+1}=(1+\frac{1}{n+1})=\sqrt[n+1]{e_{n+1}} n+1en=n+11⋅(1+n1)⋅(1+n1)⋅...⋅(1+n1)≤n+11+(1+n1)+(1+n1)+...+(1+n1)=n+11+n(1+n1)=n+1n+2=(1+n+11)=n+1en+1
∴
e
n
≤
(
1
+
1
n
+
1
)
n
+
1
=
e
n
+
1
⇒
e
n
≤
e
n
+
1
⇒
单
增
\therefore e_n\leq(1+\frac{1}{n+1})^{n+1}=e_{n+1}\Rightarrow e_n\leq e_{n+1}\Rightarrow单增
∴en≤(1+n+11)n+1=en+1⇒en≤en+1⇒单增
②:证明有界
设
E
n
=
(
1
+
1
n
)
n
+
1
设E_n=(1+\frac{1}{n})^{n+1}
设En=(1+n1)n+1
E
n
n
=
(
1
+
1
n
)
2
⋅
(
1
+
1
n
)
⋅
(
1
+
1
n
)
⋅
.
.
.
⋅
(
1
+
1
n
)
n
≤
(
1
+
1
n
)
2
+
(
n
−
1
)
⋅
(
1
+
1
n
)
n
=
1
+
n
3
−
1
n
3
(
n
−
1
)
<
1
+
1
n
−
1
=
E
n
−
1
n
\sqrt[n]{E_n}=\sqrt[n]{(1+\frac{1}{n})^2\cdot(1+\frac{1}{n})\cdot(1+\frac{1}{n})\cdot...\cdot(1+\frac{1}{n})}\leq\frac{(1+\frac{1}{n})^2+(n-1)\cdot(1+\frac{1}{n})}{n}=1+\frac{n^3-1}{n^3(n-1)}<1+\frac{1}{n-1}=\sqrt[n]{E_{n-1}}
nEn=n(1+n1)2⋅(1+n1)⋅(1+n1)⋅...⋅(1+n1)≤n(1+n1)2+(n−1)⋅(1+n1)=1+n3(n−1)n3−1<1+n−11=nEn−1
∴
E
n
≤
E
n
−
1
≤
E
n
−
2
≤
.
.
.
≤
E
1
\therefore E_n\leq E_{n-1}\leq E_{n-2}\leq...\leq E_1
∴En≤En−1≤En−2≤...≤E1
而
e
n
<
E
n
⇒
e
n
<
E
1
⇒
e
n
有
上
界
e_n<E_n\Rightarrow e_n<E_1\Rightarrow e_n有上界
en<En⇒en<E1⇒en有上界
∴
极
限
存
在
(
✪
ω
✪
)
\therefore 极限存在(✪ω✪)
∴极限存在(✪ω✪)
1.67(打星)
lim
n
→
∞
n
2
(
a
1
n
−
a
1
n
+
1
)
\lim_{n\to\infty}n^2(a^{\frac{1}{n}}-a^{\frac{1}{n+1}})
n→∞limn2(an1−an+11)
这道题我无论怎么化,好像都化不出个什么样子来,看答案发现竟然是用中值定理来做的T_T
令
f
(
x
)
=
a
x
f(x)=a^x
f(x)=ax
a
1
n
−
a
1
n
+
1
=
(
1
n
−
1
n
+
1
)
a
ξ
l
n
a
a^{\frac{1}{n}}-a^{\frac{1}{n+1}}=(\frac{1}{n}-\frac{1}{n+1})a^{\xi}lna
an1−an+11=(n1−n+11)aξlna
然后求了极限,答案里面不还有
ξ
\xi
ξ得哇,怎么办?
∵
ξ
∈
(
1
n
+
1
,
1
n
)
\because \xi\in(\frac{1}{n+1},\frac{1}{n})
∵ξ∈(n+11,n1)
∴
ξ
→
0
\therefore \xi\to0
∴ξ→0
1.69
lim
n
→
∞
c
o
s
x
2
c
o
s
x
4
.
.
.
c
o
s
x
2
n
\lim_{n\to\infty}cos\frac{x}{2}cos\frac{x}{4}...cos\frac{x}{2^n}
n→∞limcos2xcos4x...cos2nx
这道题以前应该做过的,就是分子分母同时乘上
s
i
n
x
2
n
sin\frac{x}{2^n}
sin2nx,但是化了之后到底乘了多少个
1
2
\frac{1}{2}
21这里竟然搞错了T_T
1.77(打星)【求极限先斩后奏】
已
知
x
1
=
1
2
,
2
x
n
+
1
+
x
n
2
=
1
,
求
lim
n
→
∞
x
n
已知x_1=\frac{1}{2},2x_{n+1}+x_n^2=1,求\lim_{n\to\infty}x_n
已知x1=21,2xn+1+xn2=1,求n→∞limxn
哇~又学到了,这道题属于那种“先斩后奏”的,要先假设存在,并且强行求出极限
然后再假装正式地求出
lim
n
→
∞
∣
x
n
−
A
∣
=
0
\lim_{n\to\infty}|x_n-A|=0
limn→∞∣xn−A∣=0来说明极限等于
A
A
A
首先在草稿纸上对这个等式
2
x
n
+
1
+
x
n
2
=
1
2x_{n+1}+x_n^2=1
2xn+1+xn2=1求极限得到
2
A
+
A
2
=
1
2A+A^2=1
2A+A2=1,然后把
A
A
A解出来取合适的值(这里取舍要想一哈)
然后根据等式的变形 x n + 1 = 1 2 ( 1 − x n 2 ) x_{n+1}=\frac{1}{2}(1-x_n^2) xn+1=21(1−xn2) 得出 A = 1 2 ( 1 − A 2 ) A=\frac{1}{2}(1-A^2) A=21(1−A2)
然后两个式子相减,构造出 ∣ y n + 1 ∣ = k ∣ y n ∣ |y_{n+1}|=k|y_n| ∣yn+1∣=k∣yn∣这种样子(不同的题凑的方式不同,感觉这里还不好弄)
∣ x n + 1 − A ∣ = 1 2 ∣ x n + A ∣ ∣ x n − A ∣ |x_{n+1}-A|=\frac{1}{2}|x_{n}+A||x_n-A| ∣xn+1−A∣=21∣xn+A∣∣xn−A∣
这道题就是令 y n + 1 = x n + 1 − A , 令 k = 1 2 ∣ x n + A ∣ y_{n+1}=x_{n+1}-A,令k=\frac{1}{2}|x_{n}+A| yn+1=xn+1−A,令k=21∣xn+A∣
然后就是这种必须掌握的套路了
∣
y
n
+
1
∣
=
k
∣
y
n
∣
=
k
2
∣
y
n
−
1
∣
=
.
.
.
=
k
n
∣
y
1
∣
|y_{n+1}|=k|y_n|=k^2|y_{n-1}|=...=k^n|y_1|
∣yn+1∣=k∣yn∣=k2∣yn−1∣=...=kn∣y1∣
然后计算
k
k
k的范围,算出来肯定是要小于
1
1
1 的,所以
k
n
→
0
k^n\to0
kn→0
∴
lim
n
→
∞
∣
y
n
∣
=
0
\therefore \lim_{n\to\infty}|y_n|=0
∴limn→∞∣yn∣=0
即:
lim
n
→
∞
x
n
=
A
\lim_{n\to\infty}x_n=A
limn→∞xn=A
1.80【证明题】
a
≤
x
≤
b
,
a
≤
f
(
x
)
≤
b
,
且
∀
x
1
,
x
2
∈
[
a
,
b
]
有
∣
f
(
x
2
)
−
f
(
x
1
)
∣
=
k
∣
x
2
−
x
1
∣
,
k
<
1
a\leq x\leq b,a\leq f(x)\leq b,且\forall x_1,x_2\in[a,b]有|f(x_2)-f(x_1)|=k|x_2-x_1|,k<1
a≤x≤b,a≤f(x)≤b,且∀x1,x2∈[a,b]有∣f(x2)−f(x1)∣=k∣x2−x1∣,k<1
(
1
)
证
明
:
∃
唯
一
ξ
使
得
f
(
ξ
)
=
ξ
(1)证明:\exist 唯一\xi使得f(\xi)=\xi
(1)证明:∃唯一ξ使得f(ξ)=ξ
移项一哈就是
f
(
ξ
)
−
ξ
=
0
f(\xi)-\xi=0
f(ξ)−ξ=0,也就是证明
g
(
x
)
=
f
(
x
)
−
x
g(x)=f(x)-x
g(x)=f(x)−x在区间内有唯一零点
那么按照老套路就是找到异号的两个端点就能证明存在,这里
g
(
a
)
≥
0
,
g
(
b
)
≤
0
g(a)\geq0,g(b)\leq0
g(a)≥0,g(b)≤0,答案是不是写反了?
然后证明唯一性就是证明他单调,但是这道题没办法证明单调,但是跟普通的题相比多了个条件,肯定要把这个条件用上
证明唯一性:反证法
假如还存在一个
η
\eta
η使得
f
(
η
)
=
η
f(\eta)=\eta
f(η)=η
那么
f
(
ξ
)
−
f
(
η
)
=
ξ
−
η
f(\xi)-f(\eta)=\xi-\eta
f(ξ)−f(η)=ξ−η
∣
ξ
−
η
∣
=
f
(
ξ
)
−
f
(
η
)
=
k
∣
ξ
−
η
∣
⇒
∣
ξ
−
η
∣
(
1
−
k
)
=
0
⇒
k
=
1
|\xi-\eta|=f(\xi)-f(\eta)=k|\xi-\eta|\Rightarrow |\xi-\eta|(1-k)=0\Rightarrow k=1
∣ξ−η∣=f(ξ)−f(η)=k∣ξ−η∣⇒∣ξ−η∣(1−k)=0⇒k=1
而
k
<
1
k<1
k<1所以矛盾
(
2
)
对
于
任
意
的
x
1
∈
[
a
,
b
]
,
x
n
+
1
=
f
(
x
n
)
,
证
明
lim
n
→
∞
x
n
存
在
,
且
lim
n
→
∞
x
n
=
ξ
(2)对于任意的x_1\in[a,b],x_{n+1}=f(x_n),证明\lim_{n\to\infty}x_n存在,且\lim_{n\to\infty}x_n=\xi
(2)对于任意的x1∈[a,b],xn+1=f(xn),证明n→∞limxn存在,且n→∞limxn=ξ
这个也有种先斩后奏的思想
x
n
的
极
限
等
于
ξ
x_n的极限等于\xi
xn的极限等于ξ,那么
x
n
−
ξ
的
极
限
就
该
等
于
0
x_n-\xi的极限就该等于0
xn−ξ的极限就该等于0
因此就来求 lim n → ∞ ( x n − ξ ) \lim_{n\to\infty}(x_n-\xi) limn→∞(xn−ξ)
而根据所给的 x n + 1 = f ( x n ) x_{n+1}=f(x_n) xn+1=f(xn)的条件,就阔以一层一层变回去
∣ x n − ξ ∣ = ∣ f ( x n − 1 ) − f ( ξ ) ∣ = 再 用 题 干 的 条 件 k ∣ x n − 1 − ξ ∣ = . . . = k n − 1 ∣ x 1 − ξ ∣ = 0 |x_n-\xi|=|f(x_{n-1})-f(\xi)|\stackrel{再用题干的条件}{=}k|x_{n-1}-\xi|=...=k^{n-1}|x_1-\xi|=0 ∣xn−ξ∣=∣f(xn−1)−f(ξ)∣=再用题干的条件k∣xn−1−ξ∣=...=kn−1∣x1−ξ∣=0
这样极限就求出来了,并且也说明了极限存在
1.81
就是求有理数的系数 与无理数的系数 的比值的极限
(
2
+
2
)
n
=
A
n
+
2
B
n
,
求
lim
n
→
∞
A
n
B
n
(2+\sqrt{2})^n=A_n+\sqrt{2}B_n,求\lim_{n\to\infty}\frac{A_n}{B_n}
(2+2)n=An+2Bn,求n→∞limBnAn
要先找到关系式,一开始还没反应过来QAQ
A
n
+
2
B
n
=
(
2
+
2
)
(
A
n
−
1
+
2
B
n
−
1
)
=
2
(
A
n
−
1
+
B
n
−
1
)
+
2
(
A
n
−
1
+
2
B
n
−
1
)
A_n+\sqrt{2}B_n=(2+\sqrt{2})(A_{n-1}+\sqrt{2}B_{n-1})=2(A_{n-1}+B_{n-1})+\sqrt{2}(A_{n-1}+2B_{n-1})
An+2Bn=(2+2)(An−1+2Bn−1)=2(An−1+Bn−1)+2(An−1+2Bn−1)
∴
{
A
n
=
2
(
A
n
−
1
+
B
n
−
1
)
B
n
=
(
A
n
−
1
+
2
B
n
−
1
)
\therefore \left\{\begin{matrix} A_n=2(A_{n-1}+B_{n-1})\\ \\ B_n=(A_{n-1}+2B_{n-1}) \end{matrix}\right.
∴⎩⎨⎧An=2(An−1+Bn−1)Bn=(An−1+2Bn−1)
∴
A
n
B
n
=
2
(
A
n
−
1
+
B
n
−
1
)
(
A
n
−
1
+
2
B
n
−
1
)
=
=
=
=
=
=
还
要
再
转
换
一
哈
2
(
A
n
−
1
B
n
−
1
)
+
1
A
n
−
1
B
n
−
1
+
2
\therefore \frac{A_n}{B_n}=\frac{2(A_{n-1}+B_{n-1})}{(A_{n-1}+2B_{n-1})}\stackrel{还要再转换一哈}{======}\frac{2(\frac{A_{n-1}}{B_{n-1}})+1}{\frac{A_{n-1}}{B_{n-1}}+2}
∴BnAn=(An−1+2Bn−1)2(An−1+Bn−1)======还要再转换一哈Bn−1An−1+22(Bn−1An−1)+1
然
后
就
领
A
n
B
n
=
x
n
然后就领\frac{A_n}{B_n}=x_n
然后就领BnAn=xn就好做了
得到的关系式就是:
x
n
=
2
x
n
−
1
+
1
x
n
−
1
+
2
x_n=\frac{2x_{n-1}+1}{x_{n-1}+2}
xn=xn−1+22xn−1+1
做
差
:
x
n
+
1
−
x
n
=
2
(
x
n
−
x
n
−
1
)
(
x
n
−
1
+
2
)
(
x
n
+
2
)
做差:x_{n+1}-x_{n}=\frac{2\left(x_{n}-x_{n-1}\right)}{\left(x_{n-1}+2\right)\left(x_{n}+2\right)}
做差:xn+1−xn=(xn−1+2)(xn+2)2(xn−xn−1),与分子同号,说明单调
然后
x
n
>
0
x_n>0
xn>0能理解,
x
n
<
2
x_n<2
xn<2是把上面的关系式化简成
x
n
=
2
−
1
x
n
−
1
+
2
x_n=2-\frac{1}{x_{n-1}+2}
xn=2−xn−1+21,这样就能看出了因此极限存在
然后就设出来反解出来
1.82【函数迭代】
0 ≤ f ( x ) ≤ x , x ∈ [ 0 , + ∞ ) , a 1 ≥ 0 , a n + 1 = f ( a n ) ( 1 ) 求 证 : { a n } 收 敛 ( 2 ) 证 明 : 设 lim n → ∞ a n = t , 则 有 f ( t ) = t ( 3 ) 证 明 : 若 条 件 改 为 0 ≤ f ( x ) < x , x ∈ ( 0 , + ∞ ) , 则 t = 0 0\leq f(x)\leq x,x\in[0,+\infty),a_1\geq0,a_{n+1}=f(a_n)\\ (1)求证:\{a_n\}收敛\\ (2)证明:设\lim_{n\to\infty}a_n=t,则有f(t)=t\\ (3)证明:若条件改为0\leq f(x)<x,x\in(0,+\infty),则t=0 0≤f(x)≤x,x∈[0,+∞),a1≥0,an+1=f(an)(1)求证:{an}收敛(2)证明:设n→∞liman=t,则有f(t)=t(3)证明:若条件改为0≤f(x)<x,x∈(0,+∞),则t=0
(1)
∵
f
(
x
)
≤
x
⇒
f
(
a
n
)
≤
a
n
\because f(x)\leq x\Rightarrow f(a_n)\leq a_n
∵f(x)≤x⇒f(an)≤an
又
∵
f
(
a
n
)
=
a
n
+
1
⇒
a
n
+
1
≤
a
n
⇒
a
n
单
减
\because f(a_n)=a_{n+1}\Rightarrow a_{n+1}\leq a_n\Rightarrow a_n单减
∵f(an)=an+1⇒an+1≤an⇒an单减
∵
x
≥
0
⇒
有
下
界
\because x\geq0\Rightarrow 有下界
∵x≥0⇒有下界
∴
收
敛
\therefore 收敛
∴收敛
(2)
f
(
t
)
=
f
(
lim
n
→
∞
a
n
)
=
lim
n
→
∞
f
(
a
n
)
=
lim
n
→
∞
a
n
+
1
=
t
f(t)=f(\lim_{n\to\infty}a_n)=\lim_{n\to\infty}f(a_n)=\lim_{n\to\infty}a_{{n+1}}=t
f(t)=f(limn→∞an)=limn→∞f(an)=limn→∞an+1=t
其
中
f
(
lim
n
→
∞
a
n
)
=
lim
n
→
∞
f
(
a
n
)
我
懵
逼
了
一
哈
(
`
・
ω
・
´
)
,
然
后
觉
得
好
像
有
道
理
其中f(\lim_{n\to\infty}a_n)=\lim_{n\to\infty}f(a_n)我懵逼了一哈(`・ω・´),然后觉得好像有道理
其中f(limn→∞an)=limn→∞f(an)我懵逼了一哈(`・ω・´),然后觉得好像有道理
(3)
大概就是说,如果能等于,那就迭代到自变量和因变量相等那一点
如果不能等于,那就只能迭代到0
1.83
已 知 f ( x ) = x + l n ( 2 − x ) 有 最 大 值 f ( 1 ) = 1 , x 1 = l n 2 , x n = ∑ i = 2 n l n ( 2 − x i ) , 证 明 : lim n → ∞ x n 极 限 存 在 并 求 值 已知f(x)=x+ln(2-x)有最大值f(1)=1,x_1=ln2,x_n=\sum_{i=2}^nln(2-x_i),证明:\lim_{n\to\infty}x_n极限存在并求值 已知f(x)=x+ln(2−x)有最大值f(1)=1,x1=ln2,xn=i=2∑nln(2−xi),证明:n→∞limxn极限存在并求值
所给的条件就是第一问,一般第一问都是为第二问做铺垫的,我就没发现这个
x n = ∑ i = 2 n l n ( 2 − x i ) = x n − 1 + l n ( 2 − x n − 1 ) x_n=\sum_{i=2}^nln(2-x_i)=x_{n-1}+ln(2-x_{n-1}) xn=∑i=2nln(2−xi)=xn−1+ln(2−xn−1)
这个我都没看出来T_T,这样就找到了递推关系,并且这个递推关系长得就和我们的条件一样,所以写出来就是
x n = f ( x n − 1 ) x_n=f(x_{n-1}) xn=f(xn−1)
f ( x ) f(x) f(x)有最大值,说明 x n x_n xn有上界,于是第一个条件就出来了,再证明单增就行了
x n − x n − 1 = l n ( 2 − x n − 1 ) > 0 x_n-x_{n-1}=ln(2-x_{n-1})>0 xn−xn−1=ln(2−xn−1)>0所以单增也出来了,之后就好做了
1.84
x 1 = 1 , x n = ∫ 0 1 m i n ( x , x n − 1 ) d x , 证 明 lim n → ∞ 存 在 并 求 值 x_1=1,x_n=\int_0^1min(x,x_{n-1})dx,证明\lim_{n\to\infty}存在并求值 x1=1,xn=∫01min(x,xn−1)dx,证明n→∞lim存在并求值
这个
m
i
n
min
min操作一开始会有点懵逼,写几项试一试喃
x
2
=
∫
0
1
m
i
n
(
x
,
1
)
d
x
=
∫
0
1
x
d
x
=
1
2
x_2=\int_0^1min(x,1)dx=\int_0^1xdx=\frac{1}{2}
x2=∫01min(x,1)dx=∫01xdx=21
x 3 = ∫ 0 1 2 x d x + ∫ 1 2 1 1 2 d x = 3 8 x_3=\int_0^{\frac{1}{2}}xdx+\int_{\frac{1}{2}}^1\frac{1}{2}dx=\frac{3}{8} x3=∫021xdx+∫21121dx=83
会发现递推关系是这样 x n = ∫ 0 x n − 1 x d x + ∫ x n − 1 1 x n − 1 d x = x n − 1 − 1 2 x n − 1 2 x_n=\int_0^{x_{n-1}}xdx+\int_{x_{n-1}}^1x_{n-1}dx=x_{n-1}-\frac{1}{2}x_{n-1}^2 xn=∫0xn−1xdx+∫xn−11xn−1dx=xn−1−21xn−12
单调性倒是一眼就看出来了,可是有下界还是要推一推的
∵ 单 调 ∴ x n − 1 < x 1 = 1 \because 单调\therefore x_{n-1}<x_1=1 ∵单调∴xn−1<x1=1
∴ x n − 1 > x n − 1 2 > x n − 1 2 2 ⇒ x n − 1 > x n − 1 2 ⇒ x n − 1 − x n − 1 2 > 0 ⇒ x n > 0 ⇒ 有 下 界 \therefore x_{n-1}>x_{n-1}^2>\frac{x_{n-1}^2}{2}\Rightarrow x_{n-1}>x_{n-1}^2\Rightarrow x_{n-1}-x_{n-1}^2>0\Rightarrow x_n>0\Rightarrow 有下界 ∴xn−1>xn−12>2xn−12⇒xn−1>xn−12⇒xn−1−xn−12>0⇒xn>0⇒有下界
1.87(多看)【证明题】
(
1
)
证
明
:
方
程
e
x
+
x
2
n
+
1
=
0
在
x
∈
(
−
1
,
0
)
内
有
唯
一
实
根
x
n
(1)证明:方程e^x+x^{2n+1}=0在x\in(-1,0)内有唯一实根x_n
(1)证明:方程ex+x2n+1=0在x∈(−1,0)内有唯一实根xn
就是证
f
n
(
x
)
=
e
x
+
x
2
n
+
1
f_n(x)=e^x+x^{2n+1}
fn(x)=ex+x2n+1单增并且两端异号,为后面题使用
(
2
)
证
明
:
lim
n
→
∞
x
n
存
在
并
求
其
值
a
(2)证明:\lim_{n\to\infty}x_n存在并求其值a
(2)证明:n→∞limxn存在并求其值a
f
n
+
1
(
x
)
=
e
x
+
x
2
(
n
+
1
)
+
1
=
e
x
+
x
2
n
+
1
⋅
x
2
f_{n+1}(x)=e^{x}+x^{2(n+1)+1}=e^{x}+x^{2n+1}\cdot x^2
fn+1(x)=ex+x2(n+1)+1=ex+x2n+1⋅x2
∵ x n + 1 是 f n + 1 ( x ) 的 根 ⇒ f n + 1 ( x n + 1 ) = 0 ⇒ e x n + 1 + x n + 1 2 n + 1 ⋅ x n + 1 2 = 0 \because x_{n+1}是f_{n+1}(x)的根\Rightarrow f_{n+1}(x_{n+1})=0\Rightarrow e^{x_{n+1}}+x_{n+1}^{2n+1}\cdot x_{n+1}^2=0 ∵xn+1是fn+1(x)的根⇒fn+1(xn+1)=0⇒exn+1+xn+12n+1⋅xn+12=0
又 ∵ x n + 1 ∈ ( − 1 , 0 ) ⇒ x n + 1 2 ∈ ( 0 , 1 ) ⇒ x n + 1 2 < 1 又\because x_{n+1}\in(-1,0)\Rightarrow x_{n+1}^2\in(0,1)\Rightarrow x_{n+1}^2<1 又∵xn+1∈(−1,0)⇒xn+12∈(0,1)⇒xn+12<1
∴ e x n + 1 + x n + 1 2 n + 1 > e x n + 1 + x n + 1 2 n + 1 ⋅ x n + 1 2 \therefore e^{x_{n+1}}+x_{n+1}^{2n+1}>e^{x_{n+1}}+x_{n+1}^{2n+1}\cdot x_{n+1}^2 ∴exn+1+xn+12n+1>exn+1+xn+12n+1⋅xn+12(这里我应该没判断错吧,确实应该是大于,答案好像写错了)
∴ e x n + 1 + x n + 1 2 n + 1 > 0 \therefore e^{x_{n+1}}+x_{n+1}^{2n+1}>0 ∴exn+1+xn+12n+1>0
而 x n 是 f n ( x ) 的 根 ⇒ f n ( x n ) = 0 ⇒ e x n + x n 2 n + 1 = 0 而x_n是f_n(x)的根\Rightarrow f_n(x_n)=0\Rightarrow e^{x_n}+x_n^{2n+1}=0 而xn是fn(x)的根⇒fn(xn)=0⇒exn+xn2n+1=0
∴ e x n + 1 + x n + 1 2 n + 1 > e x n + x n 2 n + 1 ⇒ x n + 1 > x n ⇒ x n 单 增 \therefore e^{x_{n+1}}+x_{n+1}^{2n+1}>e^{x_n}+x_n^{2n+1}\Rightarrow x_{n+1}>x_n\Rightarrow x_n单增 ∴exn+1+xn+12n+1>exn+xn2n+1⇒xn+1>xn⇒xn单增
而 x n < 0 ⇒ 有 上 界 ⇒ 极 限 存 在 而x_n<0\Rightarrow 有上界\Rightarrow 极限存在 而xn<0⇒有上界⇒极限存在
然后由 e x n + x n 2 n + 1 = 0 阔 以 化 出 ⇒ x n = ( 2 n + 1 ) l n ( − x n ) , 然 后 同 时 求 极 限 e^{x_n}+x_n^{2n+1}=0阔以化出\Rightarrow x_n=(2n+1)ln(-x_n),然后同时求极限 exn+xn2n+1=0阔以化出⇒xn=(2n+1)ln(−xn),然后同时求极限
这题长得还有点怪。。因为求极限的话右边是
∞
\infty
∞了,所以移项到左边,让左边等于0
 ̄へ ̄(有点无语)
a
2
n
+
1
=
l
n
(
−
a
)
\frac{a}{2n+1}=ln(-a)
2n+1a=ln(−a)
然后
a
2
n
+
1
=
0
⇒
l
n
(
−
a
)
=
0
⇒
a
=
−
1
\frac{a}{2n+1}=0\Rightarrow ln(-a)=0\Rightarrow a=-1
2n+1a=0⇒ln(−a)=0⇒a=−1
(
3
)
求
lim
n
→
∞
n
(
x
n
−
a
)
(3)求\lim_{n\to\infty}\ \ n(x_n-a)
(3)求n→∞lim n(xn−a)
由
上
题
知
:
x
n
=
(
2
n
+
1
)
l
n
(
−
x
n
)
,
但
是
这
个
形
式
对
解
题
不
方
便
,
所
以
把
右
边
的
x
n
反
解
出
来
:
由上题知:x_n=(2n+1)ln(-x_n),但是这个形式对解题不方便,所以把右边的x_n反解出来:
由上题知:xn=(2n+1)ln(−xn),但是这个形式对解题不方便,所以把右边的xn反解出来:
x
n
=
−
e
x
n
2
n
+
1
x_n=-e^{\frac{x_n}{2n+1}}
xn=−e2n+1xn
∴
n
(
x
n
−
a
)
=
n
(
1
−
e
x
n
2
n
+
1
)
\therefore n(x_n-a)=n(1-e^{\frac{x_n}{2n+1}})
∴n(xn−a)=n(1−e2n+1xn)
然后求极限,有
e
f
(
x
)
−
1
这
种
形
式
并
且
满
足
f
(
x
)
趋
向
0
的
条
件
,
比
较
好
求
e^{f(x)-1}这种形式并且满足f(x)趋向0的条件,比较好求
ef(x)−1这种形式并且满足f(x)趋向0的条件,比较好求
1.90(放缩夹逼)
已
知
0
<
t
a
n
2
x
−
x
2
<
x
4
,
x
n
=
∑
k
=
1
n
t
a
n
2
1
n
+
k
,
求
lim
n
→
∞
x
n
已知0<tan^2x-x^2<x^4,x_n=\sum_{k=1}^ntan^2\frac{1}{\sqrt{n+k}},求\lim_{n\to\infty}x_n
已知0<tan2x−x2<x4,xn=k=1∑ntan2n+k1,求n→∞limxn
这道题放缩很厉害呀~
设
I
=
t
a
n
2
1
n
+
k
I=tan^2\frac{1}{\sqrt{n+k}}
I=tan2n+k1
很明显阔以化成
1 n + k < I < 1 n + k + 1 ( n + k ) 2 \frac{1}{n+k}<I<\frac{1}{n+k}+\frac{1}{(n+k)^2} n+k1<I<n+k1+(n+k)21
我就只能弄到这儿了
答案还把右边放缩了一哈,才能够计算出来
1 n + k < I < 1 n + k + 1 n 2 \frac{1}{n+k}<I<\frac{1}{n+k}+\frac{1}{n^2} n+k1<I<n+k1+n21
然后,秀操作的时候来了
lim n → ∞ ∑ k = 1 n 1 n + k = lim n → ∞ ∑ k = 1 n 1 1 + k n 1 n = ∫ 0 1 1 1 + x d x = l n 2 \lim_{n\to\infty}\sum_{k=1}^n\frac{1}{n+k}=\lim_{n\to\infty}\sum_{k=1}^n\frac{1}{1+\frac{k}{n}}\frac{1}{n}=\int_0^1\frac{1}{1+x}dx=ln2 n→∞limk=1∑nn+k1=n→∞limk=1∑n1+nk1n1=∫011+x1dx=ln2
然后右边只是多了个 lim n → ∞ ∑ k = 1 n 1 n 2 = lim n → ∞ 1 n = 0 \lim_{n\to\infty}\sum_{k=1}^n\frac{1}{n^2}=\lim_{n\to\infty}\frac{1}{n}=0 limn→∞∑k=1nn21=limn→∞n1=0,哇~
所以夹逼出来就是 l n 2 ln2 ln2
1.91
证
明
:
f
(
x
)
=
(
n
x
+
1
)
−
1
x
单
增
,
x
∈
(
0
,
+
∞
)
证明:f(x)=(n^x+1)^{-\frac{1}{x}}单增,x\in(0,+\infty)
证明:f(x)=(nx+1)−x1单增,x∈(0,+∞)
如果直接求导会很复杂,因此取个对数,因为对数是增函数,所以单调性不会变
g
(
x
)
=
l
n
f
(
x
)
=
−
1
x
l
n
(
n
x
+
1
)
g(x)=lnf(x)=-\frac{1}{x}ln(n^x+1)
g(x)=lnf(x)=−x1ln(nx+1)
g ′ ( x ) = 1 x 2 l n ( n x + 1 ) − 1 x n x l n n n x + 1 g'(x)=\frac{1}{x^2}ln(n^x+1)-\frac{1}{x}\frac{n^xlnn}{n^x+1} g′(x)=x21ln(nx+1)−x1nx+1nxlnn
到这里,如果直接令 g ′ ( x ) > 0 g'(x)>0 g′(x)>0又很难解出 x x x的范围
没想到竟然是放缩。。。
g ′ ( x ) = 1 x 2 l n ( n x + 1 ) − 1 x n x l n n n x + 1 > 1 x 2 l n ( n x ) − 1 x ( n x + 1 ) l n n n x + 1 = 1 x l n n − 1 x l n n = 0 g'(x)=\frac{1}{x^2}ln(n^x+1)-\frac{1}{x}\frac{n^xlnn}{n^x+1}>\frac{1}{x^2}ln(n^x)-\frac{1}{x}\frac{(n^x+1)lnn}{n^x+1}=\frac{1}{x}lnn-\frac{1}{x}lnn=0 g′(x)=x21ln(nx+1)−x1nx+1nxlnn>x21ln(nx)−x1nx+1(nx+1)lnn=x1lnn−x1lnn=0
哇地一声哭了出来(╥╯^╰╥)
x n = ∑ k = 1 n ( n k + 1 ) − 1 k , 求 lim n → ∞ x n x_n=\sum_{k=1}^n(n^k+1)^{-\frac{1}{k}},求\lim_{n\to\infty}x_n xn=k=1∑n(nk+1)−k1,求n→∞limxn
要用到第二问的结论
x
n
x_n
xn相当于
∑
k
=
1
n
f
(
k
)
\sum_{k=1^n}f(k)
∑k=1nf(k)
∵ 1 ≤ k ≤ n 且 f ( x ) 单 增 \because 1\leq k\leq n且f(x)单增 ∵1≤k≤n且f(x)单增
∴ f ( 1 ) ≤ f ( k ) ≤ f ( n ) ⇒ ∑ k = 1 n f ( 1 ) ≤ x n ≤ ∑ k = 1 n f ( n ) \therefore f(1)\leq f(k)\leq f(n)\Rightarrow \sum_{k=1}^nf(1)\leq x_n\leq \sum_{k=1}^nf(n) ∴f(1)≤f(k)≤f(n)⇒∑k=1nf(1)≤xn≤∑k=1nf(n)
左边很好求极限,右边就还要变形一哈~
lim n → ∞ ∑ k = 1 n 1 ( n n + 1 ) 1 n = lim n → ∞ n ( n n + 1 ) 1 n , 分 子 分 母 同 时 除 以 n , = lim n → ∞ 1 ( 1 + 1 n n ) 1 n = 1 \lim_{n\to\infty}\sum_{k=1}^n\frac{1}{(n^n+1)^{\frac{1}{n}}}=\lim_{n\to\infty}\frac{n}{(n^n+1)^{\frac{1}{n}}},分子分母同时除以n,=\lim_{n\to\infty}\frac{1}{(1+\frac{1}{n^n})^{\frac{1}{n}}}=1 n→∞limk=1∑n(nn+1)n11=n→∞lim(nn+1)n1n,分子分母同时除以n,=n→∞lim(1+nn1)n11=1
1.101
求 f ( x ) = lim n → ∞ e 1 x a r c t a n 1 1 + x x 2 + e n x 的 间 断 点 以 及 类 型 求f(x)=\lim_{n\to\infty}\frac{e^{\frac{1}{x}}arctan\frac{1}{1+x}}{x^2+e^{nx}}的间断点以及类型 求f(x)=n→∞limx2+enxex1arctan1+x1的间断点以及类型
这道题我做第二遍的时候也没反应过来QAQ,一来就直接求的,然后就遇到问题了,就是分母的 e n x e^{nx} enx, x → 0 , n → ∞ x\to0,n\to\infty x→0,n→∞,那 n x → ? nx\to? nx→?
这道题先要分段
f
(
x
)
=
{
0
,
x
>
0
e
1
x
arctan
1
1
+
x
x
2
,
x
<
0
f ( x ) = \left\{ \begin{array} { l l } { 0 , } & { x > 0 } \\ { \frac { \mathrm { e } ^ { \frac { 1 } { x } } \arctan \frac { 1 } { 1 + x } } { x ^ { 2 } } , } & { x < 0 } \end{array} \right.
f(x)={0,x2ex1arctan1+x1,x>0x<0
然后做才好做
但是当
x
>
0
x>0
x>0的时候,为啥就是0喃?
万一
x
→
0
x\to0
x→0的时候,那
e
n
x
e^nx
enx也就不知道啊,我还是不理解T_T