动态规划:不同路径

目录

思路

解题过程

复杂度

Code


思路

使用动态规划来解决,因为它具有最优子结构和重叠子问题的特点


解题过程

1、定义状态

  • 定义 dp[i][j] 表示从起始点 (0, 0) 到达网格 (i, j) 的不同路径数目。

2、状态转移方程

  • 机器人只能向下或向右移动,因此到达 (i, j) 的路径数可以从上方 (i-1, j) 或左侧 (i, j-1) 的格子到达。因此,状态转移方程为:

dp[i][j] = dp[i-1][j] + dp[i][j-1]

  • 边界条件:
    • 当 i = 0 或 j = 0 时,机器人只能沿着边界移动,路径数目为 1

3、初始化

  • 初始化 dp[0][j] = 1 和 dp[i][0] = 1,因为在边界上的每个格子只有一条路径可以到达。

4、计算顺序

  • 根据状态转移方程,从左上角到右下角依次计算 dp[i][j] 的值。

5、返回结果

  • 最终 dp[m-1][n-1] 即为从左上角到右下角的不同路径数目。

复杂度

  • 时间复杂度:构建 dp 数组需要遍历整个二维数组,时间复杂度为 O(m * n)
  • 空间复杂度:使用了一个 m x n 的二维数组 dp,空间复杂度为 O(m * n)

Code

class Solution(object):
    def uniquePaths(self, m, n):
        # 初始化一个二维数组 dp,大小为 m x n,全部初始化为 0
        dp = [[0] * n for _ in range(m)]

        # 起始点为 (0, 0),只有一条路径
        dp[0][0] = 1
    
        # 逐个计算每个格子的路径数目
        for i in range(m):
            for j in range(n):
                # 对于每个格子 (i, j),可以从上方格子 (i-1, j) 或左方格子 (i, j-1) 到达
                if i > 0:
                    dp[i][j] += dp[i-1][j]  # 加上从上方格子到达的路径数目
                if j > 0:
                    dp[i][j] += dp[i][j-1]  # 加上从左方格子到达的路径数目
    
        # 返回右下角格子 (m-1, n-1) 的路径数目
        return dp[m-1][n-1]

  • 8
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值