Python 动态规划解决不同路径问题

一、【LeetCode 62】不同路径

1. 题目描述

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。

问总共有多少条不同的路径?
在这里插入图片描述
例如,上图是一个7 x 3 的网格。有多少可能的路径?

示例 1:

输入: m = 3, n = 2
输出: 3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向右 -> 向下
2. 向右 -> 向下 -> 向右
3. 向下 -> 向右 -> 向右

示例 2:

输入: m = 7, n = 3
输出: 28

提示:
1 <= m, n <= 100
题目数据保证答案小于等于 2 * 10 ^ 9

2. 解题思路

这是一个经典的动态规划问题,关键是要想明白如何去计算其中的某一个格子到达它的路径有多少条,计算方式就是到达它上面的格子的路径数加上到达它左边的格子的路径数。

  • 首先初始化一个二维数组memo(m行n列,每个元素的初始值为0)memo = [[0 for j in range(n)] for i in range(m)]
  • 接着对memo数组的第一行和第一列进行初始化:因为机器人每次只能向下或者向右移动一步,不能向左向上往回走,所以可以将 memo 数组的第一行和第一列的值全部初始化为1因为到达第一行的每个格子只有一直往右走这一种走法,同理到达第一列的每个格子也只有一直往下走这一种走法
  • 接下来就是双重循环,考虑数组内部的值,每一个格子的值都等于上一个格子的值加上左边格子的值memo[i][j] = memo[i - 1][j] + memo[i][j - 1],可见下图:
    在这里插入图片描述
  • 这样依次算出memo数组的每一个值后,直接返回右下角的数值即可return memo[-1][-1]

3. 代码

class Solution:
    def uniquePaths(self, m: int, n: int) -> int:
        memo = [[0 for j in range(n)] for i in range(m)]
        for i in range(m):
            memo[i][0] = 1
        for j in range(n):
            memo[0][j] = 1
        for i in range(1, m):
            for j in range(1, n):
                memo[i][j] = memo[i - 1][j] + memo[i][j - 1]
        return memo[-1][-1]  

二、【LeetCode 63】不同路径II

1. 题目描述

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
在这里插入图片描述
网格中的障碍物和空位置分别用 1 和 0 来表示。

说明: m 和 n 的值均不超过 100。

示例 1:

输入:
[
  [0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值