动态规划:不同二叉搜索树

前言

        动态规划在树的应用中是一种非常重要的算法技术,主要用于解决树结构上的优化问题。树形动态规划(Tree Dynamic Programming, 简称树形DP)通常涉及在树结构上进行状态转移,以求解最优值问题。以下是对树形动态规划的详细解释和应用场景的总结:

**基本概念**:
   - 树形动态规划是一种特殊形式的动态规划,用于解决树结构上的优化问题。它通常涉及到在给定的树上进行某种优化操作,例如求最短路径、最大独立集、最小生成树等。

**应用场景**:
   - 树形动态规划广泛应用于处理树形结构问题,例如在解决树的最大独立集、最小覆盖集、最大团等问题时,树形动态规划都能够提供有效的解决方案。
   - 在二叉树中使用动态规划,可以解决一些新颖且具有启发作用的问题,如“打家劫舍”问题,通过在二叉树上进行递推公式的推导,以求得最大收益。

**算法实现**:
   - 树形动态规划的实现通常涉及两个阶段:首先是自底向上的阶段,即从叶子节点开始,逐步向上计算每个节点的状态值;其次是自顶向下的阶段,即从根节点开始,逐步向下更新每个节点的状态值。
   - 在某些情况下,树形动态规划还可以通过换根法来提高求解效率,特别是在无根树的情况下,通过选择任意节点作为根,然后进行状态转移。

问题定义

        给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。

示例 1:

输入:n = 3
输出:5

示例 2:

输入:n = 1
输出:1

提示:

  • 1 <= n <= 19

思路

        对于每个节点值 i(1 到 n),它可以作为根节点,左边的子树可以包含 i-1 个节点,右边的子树可以包含 n-i 个节点。因此,对于 n 个节点的所有可能的二叉搜索树的数量,可以通过组合所有可能的左子树和右子树的数量来计算。

解题过程

  1. 定义状态G(n) 表示由 n 个节点组成的二叉搜索树的种数。
  2. 状态转移方程:对于任意 1 <= i <= ni 可以作为根节点,左边有 i-1 个节点,右边有 n-i 个节点,所以 G(n) = ∑(G(i-1) * G(n-i)),其中 1 <= i <= n
  3. 卡塔兰数:这个问题实际上转化为了计算第 n 个卡塔兰数,卡塔兰数的第 n 项定义为 C_n = (2n)! / ((n+1)! * n!),且满足 C_0 = 1
  4. 优化计算:直接计算卡塔兰数的公式在大数情况下会有溢出的问题,因此我们使用动态规划来避免直接计算阶乘。

这些方法具体怎么运用?

  1. 初始化:创建一个数组 dp,其中 dp[i] 表示由 i 个节点组成的二叉搜索树的种数,初始化 dp[0] = 1 和 dp[1] = 1
  2. 填充 dp 数组:对于 n 从 2 到 N(包含 N),遍历每个可能的根节点 i,根据状态转移方程更新 dp[n]
  3. 计算卡塔兰数:在计算过程中,为了避免大数溢出,我们可以使用组合数的计算公式 C(n, k) = n! / (k! * (n-k)!) 来计算,或者使用更高效的计算方法,比如 dp[i] = ∑(2*dp[j-1] * dp[i-j]),其中 j 从 1 到 i

复杂度

  • 时间复杂度O(n^2),因为我们需要两层循环来填充 dp 数组。
  • 空间复杂度O(n),用于存储 dp 数组。

code

class Solution(object):
    def numTrees(self, n):
        dp = [0] * (n + 1)
        dp[0] = 1
        dp[1] = 1
    
        for i in range(2, n + 1):
            total = 0
            for j in range(i):
                total += dp[j] * dp[i - j - 1]
            dp[i] = total
    
        return dp[n]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值