动态规划:不同的子序列

前言

        在计算机科学中,子序列问题是一个常见且重要的问题,特别是在字符串处理和生物信息学中。这个问题要求我们找出一个字符串(t)在另一个字符串(s)中作为子序列出现的次数,这是一个典型的计数问题,可以通过动态规划技术来解决。动态规划是解决这类问题的强有力工具,它通过避免重复计算和利用问题的结构特性,可以高效地找到解决方案。在实际应用中,这种方法不仅适用于字符串子序列问题,还可以推广到其他具有相似特性的问题。

        子序列定义:给定两个序列,如果第一个序列是第二个序列的重新排序(元素顺序可以改变),则第一个序列是第二个序列的子序列。例如,"abc" 是 "aabbc" 的子序列,但不是 "abdc" 的子序列。

        动态规划:动态规划是一种算法策略,用于解决具有重叠子问题和最优子结构特性的问题。它通过将问题分解为更小的子问题,并将子问题的解存储在一个表格中,从而避免了重复计算。

动态规划的适用性:在子序列问题中,动态规划的适用性主要体现在以下几个方面:

  1. 最优子结构:子序列问题可以分解为更小的子问题,即在 s 的某个前缀中找到 t 的子序列。这个问题的最优解可以由其子问题的最优解推导出来。

  2. 重叠子问题:在递归解决方案中,相同的子问题(例如,在 s 的某个子串中找到 t 的子序列)会被多次求解。动态规划通过存储这些子问题的解来避免重复计算。

思路

选择动态规划的原因是这个问题具有两个关键特性:

  • 问题的最优解包含其子问题的最优解。即,s 的子序列中 t 出现的次数可以分解为更小子字符串的相同问题。
  • 在递归过程中,相同的子问题被多次解决。动态规划通过存储这些子问题的解来避免重复计算。

解题过程

定义状态

        在动态规划中,状态的定义是核心。对于子序列问题,我们定义 dp[i][j] 表示在 s 的前 i 个字符中,t 的前 j 个字符作为子序列出现的次数。

初始化状态

        初始化状态是动态规划的第一步。对于子序列问题:

  • dp[0][0] = 1:空字符串在任何字符串中都出现 1 次。
  • dp[i][0] = 1:对于所有 i,空字符串 t 作为 s 的任何前缀的子序列出现 1 次。
  • dp[m][j] = 0:对于所有 j < n,如果 s 结束了而 t 没有结束,则 t 不能作为 s 的子序列。
状态转移方程

        状态转移方程是动态规划中连接子问题和当前问题的关键。对于子序列问题:

  • 如果 s[i-1] == t[j-1],则 dp[i][j] 可以由两种情况得到:

    • s[i-1] 匹配 t[j-1],并且 t 的剩余部分 t[j+1:] 作为 s[i+1:] 的子序列出现的次数,即 dp[i-1][j-1]
    • s[i-1] 不匹配 t[j-1],但 t[j:] 作为 s[i+1:] 的子序列出现的次数,即 dp[i-1][j]
  • 如果 s[i-1] != t[j-1],则 dp[i][j] 仅由 dp[i-1][j] 决定,因为 s[i-1] 不贡献于构成 t[j-1] 的子序列。

迭代计算

        通过两层循环遍历 dp 数组,根据状态转移方程填充数组。外层循环遍历 s 的所有字符,内层循环遍历 t 的所有字符。

优化

        为了优化空间复杂度,可以使用滚动数组技术,只存储当前行和前一行的数据。由于 dp[i][j] 只依赖于 dp[i-1][j-1]dp[i-1][j],我们可以只使用两个数组来交替存储这些值。

取模操作

        由于题目要求结果需要对 10^9 + 7 进行取模,我们需要在每次更新 dp 数组时,对结果进行取模操作,以确保最终结果在要求的范围内。

复杂度

  • 时间复杂度O(m * n),因为我们需要通过两个嵌套循环遍历整个 dp 数组。
  • 空间复杂度:可以通过优化降低到 O(min(m, n)),使用滚动数组技术,只存储计算当前行所需的上一行数据。

code

class Solution(object):
    def numDistinct(self, s, t):
        len_s = len(s)
        len_t = len(t)
        dp = [[0] * (len_t + 1) for _ in range(len_s + 1)]

        # 初始化第一行和第一列
        for i in range(len_s + 1):
            dp[i][0] = 1

        # 填充dp数组
        for i in range(1, len_s + 1):
            for j in range(1, len_t + 1):
                if s[i - 1] == t[j - 1]:
                    dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]
                else:
                    dp[i][j] = dp[i - 1][j]

        return dp[len_s][len_t] % (10**9 + 7)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值