【广义胡克定律】一文搞懂物理仿真中的广义胡克定律


泊松比

轴向与横向

泊松比(Poisson’s ratio) 是材料的一个重要属性,在连续介质力学中,可以反应不同材料在不同负载下的形变情况,一般用 ν \nu ν 来表示,无量纲。读者可想象手中拥有一块条状橡皮,当我们沿着长条方向拉伸橡皮时,橡皮会变细,反之沿着长条方向挤压橡皮时,橡皮会变粗。我们可以称施加力为载荷,遂有:

  • 载荷相同的方向为轴向(longitudinal)
  • 载荷垂直的方向为横向(lateral)

应力与应变

材料由于外因(受力、湿度、温度场变化等)而变形时,材料为抵抗外因作用,希望自身从变形后的位置恢复到变形前的位置,会在内各部分之间产生相互作用的内力:

  • 在所考察的截面 S S S 某一点 P P P 单位面积上的内力 F F F 称为应力(stress),单位为 N ⋅ m − 2 \mathrm{N\cdot m^{-2}} Nm2(同压强);

在这里插入图片描述

  • 当材料或物体在收到外力或者非均匀温度场等因素作用时,会产生局部相对变形,我们称之为应变(strain),无量纲,一般用 ϵ \epsilon ϵ 表示且记为百分数形式,即 ϵ = lim ⁡ L → 0 Δ L L \epsilon = \lim\limits_{L \to 0}{\frac{\Delta L}{L}} ϵ=L0limLΔL

应力有正应力(法向应力),切应力(剪切应力)及体应力;应变有正应变(法相应变或线应变),切应变(剪切应变或角应变)及体应变:

  • 正应力(normal stress):垂直于截面的应力分量称,或被称为法向应力,用 σ \sigma σ 记法,表示材料内部相邻两截面间拉伸和压缩的作用;
    σ = lim ⁡ Δ S → 0 Δ F Δ S = d F d S \sigma = \lim\limits_{\Delta S \to 0}{\frac{\Delta F}{\Delta S}} = \frac{\mathrm{d}F}{\mathrm{d}S} σ=ΔS0limΔSΔF=dSdF
    • 正应变(normal strain):该点处,某一方向的截面上所分布的法向应力所产生的长度方向的应变称为正应变;
  • 切应力(shear stress):相切于截面的应力分量,或被称为剪应力,用 τ \tau τ 记法,表示材料相互错动的作用力;
    τ = lim ⁡ Δ S → 0 Δ F Δ S = d F d S \tau = \lim\limits_{\Delta S \to 0}{\frac{\Delta F}{\Delta S}} = \frac{\mathrm{d}F}{\mathrm{d}S} τ=ΔS0limΔSΔF=dSdF
    • 切应变(shear strain):该点处,某一方向的截面上所分布的剪切力所产生的长度方向的应变称为切应变;

在这里插入图片描述

正应力与切应力可合成全应力。

  • 体应力(volume stress):当材料收到来自各个方向的均匀压力,且材料为各向同性,材料会发生形变,且各方向截面上具有相同大小压应力(或压强),其被称为体应力,可用压强 p p p 作为记法;
    • 体应变(volume strain):物体单位体积的改变量,一般用 θ \theta θ 表示,即 θ = lim ⁡ V → 0 Δ V V \theta = \lim\limits_{V \to 0}{\frac{\Delta V}{V}} θ=V0limVΔV

速度散度的物理意义实际上为体积变化率,读者可移步至 后续推出 进一步阅读。无限小应变条件下(小于 1 % 1\% 1% 左右的应变), θ = ϵ x + ϵ y + ϵ z \theta = \epsilon_x + \epsilon_y + \epsilon_z θ=ϵx+ϵy+ϵz

如对应力张量、应力球张量、应力张量分解、应力平衡微分方程存在疑惑,读者可移步至 后续推出 进一步阅读。

泊松比定义

在这里插入图片描述
以图为例的各向同性(isotropic)方形材料中,我们将 x x x 轴作为轴向并其对施加负载,材料由白色状态被拉伸至黄色状态。在此过程中产生了轴向应变 ϵ x = Δ L x L x \epsilon_x = \frac{\Delta L_x}{L_x} ϵx=LxΔLx横向应变 ϵ y = − Δ L y L y , ϵ z = − Δ L z L z \epsilon_y = \frac{-\Delta L_y}{L_y}, \epsilon_z = \frac{-\Delta L_z}{L_z} ϵy=LyΔLy,ϵz=LzΔLz

由于各项同性假设,不难得到两横向应变应有 ϵ y = ϵ z \epsilon_y = \epsilon_z ϵy=ϵz

人们发现,两横向应变总是与轴向应变成正比例关系,即: ϵ y ∝ ϵ x , ϵ z ∝ ϵ x \epsilon_y \propto \epsilon_x, \epsilon_z \propto \epsilon_x ϵyϵx,ϵzϵx。我们可以对其做比,即可得到关于该材料的物质常数
ν = − ϵ y ϵ x = − ϵ z ϵ x = − ϵ l o n g i t u d i n a l ϵ l a t e r a l \nu = \frac{-\epsilon_y}{\epsilon_x} = \frac{-\epsilon_z}{\epsilon_x} = \frac{-\epsilon_{longitudinal}}{\epsilon_{lateral}} ν=ϵxϵy=ϵxϵz=ϵlateralϵlongitudinal
该常数被称为泊松比

按照约定,无量纲物理参数 ϵ \epsilon ϵ 对应拉伸应变时为 ϵ > 0 \epsilon > 0 ϵ>0 ϵ \epsilon ϵ 对应压缩应变时为 ϵ < 0 \epsilon < 0 ϵ<0。由于大多数情况下材料的轴向应变与横向应变符号相反,所以上式中加入了负号用于配平符号,使得其泊松比为正数。

生活中常见物质的泊松比落在 [ 0 , 0.5 ] [0,0.5] [0,0.5] 区间内,绝大多数材料的泊松比会分布在 0.3 0.3 0.3 附近,下面列出一些材料的示例泊松比:

材料泊松比
0.35 0.35 0.35
0.3 0.3 0.3
钢铁 0.3 0.3 0.3
芝士 0.45 0.45 0.45
橡胶 0.5 0.5 0.5
混凝土 0.2 0.2 0.2
软木 0 0 0
拉胀聚氨酯泡沫塑料 − 0.7 -0.7 0.7
  • 当材料的 ν > 0 \nu > 0 ν>0 时,轴向拉伸该材料会导致横向收缩,轴向压缩会导致横向膨胀;
  • 当材料的 ν = 0 \nu = 0 ν=0 时,轴向拉伸或压缩该材料不会影响横向形态;
    • 如红酒瓶的软木塞子,泊松比为零的良好属性使得产品在封装出厂时更容易将瓶塞推入瓶口中;
    • 如采用大泊松比的瓶塞,会导致瓶塞在推入瓶口的过程中发生膨胀,增加封装难度。
  • 当材料的 ν < 0 \nu < 0 ν<0 时,轴向拉伸该材料会导致横向膨胀,其也被称为拉胀材料
    • 部分高分子聚合物的特殊结构使得其具备了拉胀特性;
    • 拉胀材料很难自然生成。

拉胀材料


广义胡克定律

单轴应力

在钢丝的拉伸测试中,应力仅会沿着钢丝为轴作用域材料上,我们把这种仅有一个分量的应力叫做单轴应力(uniaxial stress)。钢丝拉伸测试中所加应力是张应力,即在受力方向上使得钢丝要舒张伸长,虽然宏观上横向没有被施加应力,但根据钢丝的泊松比属性,钢丝依然要在横向上发生收缩,减小横截面积。

在拉伸测试中,根据胡克定律的指导,我们可通过应力与应变的比值求出材料的杨氏模量 E E E,如 E = σ x ϵ x E = \frac{\sigma_x}{\epsilon_x} E=ϵxσx。通过此例子,假设我们已知杨氏模量 E E E 的值,我们可以通过施加的正应力大小 σ x \sigma_x σx,结合泊松比 ν \nu ν,来指导求出材料在轴向和横向上的应变,即 ϵ x = σ x E , ϵ y = − ν ϵ x , ϵ z = − ν ϵ x \epsilon_x = \frac{\sigma_x}{E}, \epsilon_y = -\nu\epsilon_x, \epsilon_z = -\nu\epsilon_x ϵx=Eσx,ϵy=νϵx,ϵz=νϵx

三轴应力

当有沿三个正交轴,即多个分量的应力施加在材料上时,我们不能再通过狭义胡克定律指导单个分量上的应力产生应变,因为每个方向上的应变都会收到本方向轴向应力和其余两个横向应力的影响。如图,此时 ϵ x ≠ σ x E \epsilon_x \neq \frac{\sigma_x}{E} ϵx=Eσx

在这里插入图片描述

广义胡克定律推导

我们可以通过叠加胡克定律和泊松公式,将 x x x 轴向应力产生的轴向应变,加上 y , z y,z y,z 轴向应力在 x x x 轴产生的横向应变,即可计算出 x x x 轴最终叠加的累计应变 ϵ x \epsilon_x ϵx,同理可得 ϵ y , ϵ z \epsilon_y, \epsilon_z ϵy,ϵz
ϵ x = σ x E − ν σ y E − ν σ z E \epsilon_x = \frac{\sigma_x}{E} - \nu\frac{\sigma_y}{E} - \nu\frac{\sigma_z}{E} ϵx=EσxνEσyνEσz ϵ y = σ y E − ν σ x E − ν σ z E \epsilon_y = \frac{\sigma_y}{E} - \nu\frac{\sigma_x}{E} - \nu\frac{\sigma_z}{E} ϵy=EσyνEσxνEσz ϵ z = σ z E − ν σ x E − ν σ y E \epsilon_z = \frac{\sigma_z}{E} - \nu\frac{\sigma_x}{E} - \nu\frac{\sigma_y}{E} ϵz=EσzνEσxνEσy
化简后可得广义胡克定律
ϵ x = 1 E [ σ x − ν ( σ y + σ z ) ] \epsilon_x = \frac{1}{E}[\sigma_x-\nu(\sigma_y+\sigma_z)] ϵx=E1[σxν(σy+σz)] ϵ y = 1 E [ σ y − ν ( σ x + σ z ) ] \epsilon_y = \frac{1}{E}[\sigma_y-\nu(\sigma_x+\sigma_z)] ϵy=E1[σyν(σx+σz)] ϵ z = 1 E [ σ z − ν ( σ x + σ y ) ] \epsilon_z = \frac{1}{E}[\sigma_z-\nu(\sigma_x+\sigma_y)] ϵz=E1[σzν(σx+σy)]

广义胡克定律可用于指导三轴应力下的材料形变。对于切应变,请看 后续推出

不可压缩性

材料泊松比的理论最大值为 0.5 0.5 0.5,此处我们可以联系体应变一节进行论证。已知体应变可表示为 θ = ϵ x + ϵ y + ϵ z \theta = \epsilon_x + \epsilon_y + \epsilon_z θ=ϵx+ϵy+ϵz,根据广义胡克定律推导可得:

  • θ = 1 E [ σ x − ν ( σ y + σ z ) ] + 1 E [ σ y − ν ( σ x + σ z ) ] + 1 E [ σ z − ν ( σ x + σ y ) ] \theta = \frac{1}{E}[\sigma_x-\nu(\sigma_y+\sigma_z)] + \frac{1}{E}[\sigma_y-\nu(\sigma_x+\sigma_z)] + \frac{1}{E}[\sigma_z-\nu(\sigma_x+\sigma_y)] θ=E1[σxν(σy+σz)]+E1[σyν(σx+σz)]+E1[σzν(σx+σy)]
  • θ = 1 − 2 ν E ( σ x + σ y + σ z ) \theta = \frac{1-2\nu}{E}(\sigma_x+\sigma_y+\sigma_z) θ=E12ν(σx+σy+σz)
    • ν = 0.5 \nu = 0.5 ν=0.5 时, θ ≡ 0 \theta\equiv0 θ0

由此可知当材料泊松比为 0.5 0.5 0.5 时,无论施加应力如何(在弹性范围内),体应变均为 0 0 0,即物体可能会产生形状变化,但不会产生体积变化,我们称这种材料为不可压缩材料。如橡胶材质,其泊松比趋近于 0.5 0.5 0.5,可视为具有不可压缩性。

  • 7
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
### 回答1: 逐级法载法是一种在结构分析经常使用的方法,它可以用来计算结构的内力和变形等参数。该方法的优点是可以将结构分解为多个小段进行分析,从而简化计算过程。同时,逐级法载法也可以用来验证胡克定律胡克定律是材料力学的基本定律之一,它描述了弹性固体在受力后的变形关系。根据胡克定律,弹性固体的变形与受到的外力成正比,这种比例关系称为弹性模量。因此,通过逐级法载法可以计算出结构的内力和变形等参数,从而验证胡克定律是否成立。 如果不使用逐级法载法进行计算,也可以验证胡克定律。但是这种方法通常需要进行更为复杂的计算,而且容易出现误差。因此,逐级法载法是一种比较简单、直观且精确的方法,可以有效地验证胡克定律。 ### 回答2: 逐级法是一种实验方法,用于验证胡克定律胡克定律是关于弹性材料的变形与应力之间关系的基本定律。根据胡克定律,如果一个弹性材料在弹性极限内受力,其应变正比于受力的大小。而逐级法的目的是通过逐级增加外力,使材料逐渐接近其弹性极限,从而验证胡克定律。 首先,逐级法能够通过逐步加大的外力,使材料逐渐接近弹性极限。这样可以保证实验结果在线性范围内,将近似满足胡克定律的条件。若一次性施加过大的力,可能会引起材料的非线性变形,使实验结果与胡克定律不符。 其次,逐级法也可以在逐步增加外力的过程观察材料的应变变化情况。当外力小到一定程度时,材料的应变可以近似视为线性变化。通过测量应变与外力的关系,可以得到材料的应力-应变曲线,从而验证胡克定律。 另外,逐级法使得实验过程可控。在每个级别的外力施加之前,可以先进行应变的测量。这样可以确保每个阶段的实验条件相对稳定,使实验结果可靠且可重复。 综上所述,逐级法是一种常用的验证胡克定律的方法。若不采用逐级法,可能导致实验结果与胡克定律不符,同时也难以准确测量材料的应力-应变关系。因此,为了验证胡克定律并获得可靠的实验结果,我们需要使用逐级法进行载法。 ### 回答3: 逐级法载法是一种实验方法,用于验证胡克定律胡克定律指出,弹性体在受力时,其形变与受力成直线正比。逐级法载法能够通过逐渐增加外力使弹性体形变,并观察其形变量与力的关系,从而验证胡克定律。 之所以需要使用逐级法载法,是因为弹性体在受力时,其形变是渐进的过程。当形变过大时,弹性体的本征性质会发生改变,无法满足胡克定律。逐级法载法通过逐渐增加外力,使形变保持在微小范围内,避免了这种影响。 如果不使用逐级法载法,难以验证胡克定律。直接施加大量的力会导致弹性体形变过大,从而产生非线性关系,无法得出符合胡克定律的结果。逐级法载法通过渐进式的载荷,使得弹性体在小范围内保持线性关系,可以得出符合胡克定律的实验结果。 总之,逐级法载法能够有效验证胡克定律,通过逐步增加外力,使得弹性体形变保持在微小范围内,从而得出符合胡克定律的线性关系。如果不使用这种加载方法,很难得到符合胡克定律的实验结果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Sycamore_Ma

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值