从应力引入张量的概念:
中科院李新亮老师计算流体力学公开课中,按照应力的物理意义引入了张量:
在三维空间中,我们可以用向量表示作用于一点或一个平面上的力,那么如何表示作用于物体块内部的应力呢?
事实上,我们可以将向量升级一下,用三个向量组成的矩阵来表示这样的内部应力。对物体块,沿着任意不平行的三个方向切三刀,暴漏出来的三个面上三个力,都可以作为组成矩阵的向量,并唯一确定一个张量。
需要说明的是,暴漏出的三个面可以根据任意一组基来表示,而面上的力也可以根据任意一组基来表示。为了简化,这里选择的同一组正交基来表示这个应力张量,如下图所示:
图片来自 计算流体力学ppt讲义-李新亮 |
由于针对应力而言,这里的张量被限制为了矩阵,并具有如下性质:
1.坐标变不性:选择任意一组基、甚至两组基来表示该张量,张量的分量改变,但对应的几何对象(应力)是不变的。
2.运算具有物理意义:张量(矩阵-2维张量)点乘方向矢量,等于该方向截面上的应力分量(矢量-1维张量)。
3. 张量的运算性质:若一个量是矩阵,与1维张量(矢量)做内积,其结果是1维张量(矢量),那么也是张量。
PS:李新亮老师,利用该性质(不是定义),来说明应力是张量;并说明对于任意的矩阵点乘矢量,都可以得到矢量,但不一定是张量。
4.平衡状态下应力张量的对称性:假设局部力平衡,不存在力偶,控制体不加速旋转,则张量是对称矩阵。
PS:关于应力张量对称的证明:百度文库-邱江涛
此外,我们还可以获取如下认识:
1.张量是矢量推广而来的,我们可以用张量,来表示任意具有坐标不变性的物理量
2.能量可以用标量(0维张量)表示,特定方向的力可以用矢量(1维张量)表示,应力可以用矩阵(2维张量)表示
3.特定方向的速度,由于选择的参考系不同,不具有坐标不变性,不是一维张量
4.相比速度,力更能被几何化
5.张量不一定是矩阵(如标量和向量),矩阵也不一定是张量(各分量需满足某种变化规律,如应力椭球、lumley三角形)
张量定义的发展:
该部分参考:马同学-如何和理解张量
张量在物理中的应用:
1.张量具有坐标不变性,可以不依赖于坐标的选取来描述物理量如:应力(需要注意:有些物理量具有相对性,如相对速度显然与坐标有关,并具有物理意义,因此不用张量表示)
2.虽然物理量的描述不唯一(因坐标系不同而不同),但物理量的之间的关系(物理规律)应当是唯一的(不因坐标系的选择而改变),因此,物理规律的更一般表示,应当是张量形式。(如:描述引力场时空几何关系的爱因斯坦场方程)
3.本构方程反映了物理量之间的唯一关系,不因坐标系而变化,因此应写成张量形式。
4.张量坐标不变性和物理量的伽利略不变性:
张量的坐标不变性,这里的坐标指的是选择一个正交、非正交、极坐标、圆柱坐标等不同的“基”来描述物理量时具有的不变性,这种不变性不是各个基上的分量不变,而是指分量的某种变化关系是不变的;
伽利略Galilei不变性,主要指,这样的“基”做惯性运动时,是否具有不变性。
以应力-应变关系(广义牛顿内摩擦定律)为例:(按照个人理解,梳理自曹树良老师PPT)
控制体所受应力(表面力)由正应力(静止部分)和剪切应力(运动部分)两部分组成:
(1)
(是点压强,取“-”号表示是指向流体微团内部的压力)
参考胡克定律,提出如下3条假设(Stokes假设):
假设1-流体具有各向同性。
假设2-应力和应变成线性关系(牛顿流体)。
假设3-流体静止时,变形率为0,应力为0,只有正应力(静压力)。
思考:违背以上假设的例外有哪些?
根据假设1和假设3,可知微团的点压强具有各向同性的(宏观充分小),但流体微团的各方向的表面力(正应力)又可能不等(微观充分大);此时认为点压强是流体静止时()三个方向表面力(反映了不同方向的压强)的平均值,即:
(2)
根据假设2,应力和应变成线性关系:
(3)
由于,矢量-一维张量的线性关系需一个系数确定,矩阵-二维张量的线性关系需2个系数确定:
任意坐标系下应力-应变关系相同:
(4)
基于以上假设,应力-应变关系如下:
(5)
(系数表示膨胀粘性系数,系数表示动力粘性系数)
根据(1)(2),在各向同性假设下,剪切应力(运动部分),应满足。
这里需要这样理解:
选定特定的参考系,但流体静止时,即,是显然的;但参考系的选取是任意的,当改变为另一个惯性参考系时, 静止的流体微团可能是运动的;当改变为另一个非惯性参考系时,;因此,只有取(而不局限于流动静止或),才能保证另外一个张量(点压强)的坐标不变性。
也就是说,剪切应力张量的表达式,要与其他的相关张量(如点压强),一致保持坐标不变性。
因此,根据(5):
(6)
其中,是第二粘性系数(膨胀粘性系数),对物性参数的研究发现:
一些情况下,如单原子气体,因此;
一些情况下,如大部分双原子气体和多原子气体,因此;
一些情况下,但,因此,可以假设(任意关系式,不影响计算结果);
一些情况下,如不可压流体,因此,可以假设(任意关系式,不影响计算结果);
一些情况下,如无粘流体,理想流体(不可压+无粘),因此,可以假设(任意关系式,不影响计算结果);
综上,流体力学中,对于一般的牛顿流体,均可认为:
多说一句,粘性和速度梯度一般是一起起作用的,如(6)中,因此,理解理想流体和无粘流体,不应当只认为,同样取决于,粘性系数很小但很大,同样不能视为无粘。如,问题:理想流体圆柱扰流的雷诺数到底是大还是小(符松)?