【学习笔记】认识张量


从应力引入张量的概念:

中科院李新亮老师计算流体力学公开课中,按照应力的物理意义引入了张量:

在三维空间中,我们可以用向量表示作用于一点或一个平面上的力\overrightarrow{P_{n}},那么如何表示作用于物体块内部的应力呢?

事实上,我们可以将向量升级一下,用三个向量组成的矩阵\mathbf{P}来表示这样的内部应力。对物体块,沿着任意不平行的三个方向\overrightarrow{n}_{1},\overrightarrow{n}_{2},\overrightarrow{n}_{3}、切三刀,暴漏出来的三个面上三个力\overrightarrow{P}_{n1},\overrightarrow{P}_{n2},\overrightarrow{P}_{n3}、,都可以作为组成矩阵\mathbf{P}的向量,并唯一确定一个张量。

      需要说明的是,暴漏出的三个面\overrightarrow{n}_{1},\overrightarrow{n}_{2},\overrightarrow{n}_{3}、可以根据任意一组基来表示,而面上的力\overrightarrow{P}_{n1},\overrightarrow{P}_{n2},\overrightarrow{P}_{n3}、也可以根据任意一组基来表示。为了简化,这里选择的同一组正交基x,y,z来表示这个应力张量\mathbf{P},如下图所示:

                 
                                       图片来自  计算流体力学ppt讲义-李新亮

        由于针对应力而言,这里的张量P被限制为了矩阵,并具有如下性质:

1.坐标变不性:选择任意一组基、甚至两组基来表示该张量,张量的分量改变,但对应的几何对象(应力)是不变的。

2.运算具有物理意义:张量P(矩阵-2维张量)点乘方向矢量\overrightarrow{n},等于该方向截面上的应力分量\overrightarrow{P}_{n}(矢量-1维张量)。

3. 张量的运算性质:若一个量P是矩阵,与1维张量(矢量\overrightarrow{n})做内积,其结果是1维张量(矢量\overrightarrow{n}),那么P也是张量。

   PS:李新亮老师,利用该性质(不是定义),来说明应力是张量;并说明对于任意的矩阵点乘矢量,都可以得到矢量,但不一定是张量。

4.平衡状态下应力张量的对称性:假设局部力平衡,不存在力偶,控制体不加速旋转,则张量P是对称矩阵。

   PS:关于应力张量对称的证明:百度文库-邱江涛

 

此外,我们还可以获取如下认识:

1.张量是矢量推广而来的,我们可以用张量,来表示任意具有坐标不变性的物理量

2.能量可以用标量(0维张量)表示,特定方向的力可以用矢量(1维张量)表示,应力可以用矩阵(2维张量)表示

3.特定方向的速度,由于选择的参考系不同,不具有坐标不变性,不是一维张量

4.相比速度,力更能被几何化

5.张量不一定是矩阵(如标量和向量),矩阵也不一定是张量(各分量需满足某种变化规律,如应力椭球、lumley三角形)


张量定义的发展:

          该部分参考:马同学-如何和理解张量


张量在物理中的应用:

1.张量具有坐标不变性,可以不依赖于坐标的选取来描述物理量如:应力(需要注意:有些物理量具有相对性,如相对速度显然与坐标有关,并具有物理意义,因此不用张量表示)

2.虽然物理量的描述不唯一(因坐标系不同而不同),但物理量的之间的关系(物理规律)应当是唯一的(不因坐标系的选择而改变),因此,物理规律的更一般表示,应当是张量形式。(如:描述引力场时空几何关系的爱因斯坦场方程

3.本构方程反映了物理量之间的唯一关系,不因坐标系而变化,因此应写成张量形式。

4.张量坐标不变性和物理量的伽利略不变性:

张量的坐标不变性,这里的坐标指的是选择一个正交、非正交、极坐标、圆柱坐标等不同的“基”来描述物理量时具有的不变性,这种不变性不是各个基上的分量不变,而是指分量的某种变化关系是不变的;

伽利略Galilei不变性,主要指,这样的“基”做惯性运动时,是否具有不变性。

以应力-应变关系(广义牛顿内摩擦定律)为例:(按照个人理解,梳理自曹树良老师PPT)

   控制体所受应力(表面力)\Pi _{ij}由正应力P_{ij}(静止部分)和剪切应力\tau _{ij}(运动部分)两部分组成:

                      \Pi _{ij}=-p\delta _{ij}+\tau_{ij}                                                         (1)

   (p点压强,取“-”号表示是指向流体微团内部的压力)

   参考胡克定律,提出如下3条假设(Stokes假设):

   假设1-流体具有各向同性。

   假设2-应力\tau _{ij}和应变S_{ij}成线性关系(牛顿流体)。

   假设3-流体静止时,变形率为0,应力为0,只有正应力P_{ij}(静压力)。

   思考:违背以上假设的例外有哪些?

  根据假设1和假设3,可知微团的点压强p具有各向同性的(宏观充分小),但流体微团的各方向的表面力\Pi _{kk}(正应力)又可能不等(微观充分大);此时认为点压强p​​​是流体静止时(\tau _{ij}=0)三个方向表面力\Pi _{kk}(反映了不同方向的压强)的平均值,即:

               p=\overline{p}=-\frac{1}{3}(\Pi _{11}+\Pi _{22}+\Pi _{33})                                           (2)

  根据假设2,应力\tau _{ij}和应变S_{ij}成线性关系:

                      \tau _{ij}=C_{ijkl}S_{kl}                                                                 (3)

 由于,矢量-一维张量的线性关系需一个系数确定,矩阵-二维张量的线性关系需2个系数确定:

 任意坐标系下应力-应变关系相同:

                     C_{ijkl}=\lambda\delta _{ij}\delta _{kl}+\mu \delta _{il}\delta _{jk}                                                (4)

  基于以上假设,应力-应变关系如下:

                   \tau _{ij}=\lambda S_{kk}\delta _{ij}+\mu (S_{ij}+S_{ji})                                           (5)

 (系数\lambda表示膨胀粘性系数,系数\mu表示动力粘性系数)

  根据(1)(2),在各向同性假设下,剪切应力\tau _{ij}(运动部分),应满足\tau _{11}+\tau _{22}+\tau _{33}=0

 这里需要这样理解:

选定特定的参考系,但流体静止时,\tau _{ij}=0\tau _{11}=\tau _{22}=\tau _{33}=0\tau _{11}+\tau _{22}+\tau _{33}=0是显然的;但参考系的选取是任意的,当改变为另一个惯性参考系时, 静止的流体微团可能是运动的;当改变为另一个非惯性参考系时,\tau _{ij}\neq 0;因此,只有取\tau _{11}+\tau _{22}+\tau _{33}=0(而不局限于流动静止或\tau _{ij}=0),才能保证另外一个张量(点压强p)的坐标不变性。

也就是说,剪切应力张量\tau _{ij}的表达式,要与其他的相关张量(如点压强p),一致保持坐标不变性。

因此,根据(5):

                   0 =\tau _{ii}=\tau _{11}+\tau _{22}+\tau _{33}\\ =3\lambda S_{kk}+\mu (S_{kk}+S_{kk})\\ =(3\lambda+2\mu)S_{kk}\\ =(3\lambda+2\mu)\triangledown \cdot \overrightarrow{v}\\ = \mu _{vol} \triangledown \cdot \overrightarrow{v}                            (6)

其中,\mu _{vol}是第二粘性系数(膨胀粘性系数),对物性参数的研究发现:

一些情况下\mu _{vol}=0,如单原子气体,因此\lambda =-2/3\mu

一些情况下\mu _{vol}\approx 0,如大部分双原子气体和多原子气体,因此\lambda \approx -2/3\mu

一些情况下\mu _{vol}\gg 0,但\triangledown \cdot \overrightarrow{v}\approx 0,因此,可以假设\lambda =-2/3\mu(任意关系式,不影响计算结果);

一些情况下\triangledown \cdot \overrightarrow{v}=0,如不可压流体,因此,可以假设\lambda =-2/3\mu(任意关系式,不影响计算结果);

一些情况下\lambda \approx \mu\approx 0,如无粘流体,理想流体(不可压+无粘),因此\mu _{vol}=0,可以假设\lambda =-2/3\mu(任意关系式,不影响计算结果);

综上,流体力学中,对于一般的牛顿流体,均可认为:

                        \lambda \approx -\frac{2}{3}\mu

多说一句,粘性和速度梯度一般是一起起作用的,如(6)中\mu _{vol} \triangledown \cdot \overrightarrow{v},因此,理解理想流体和无粘流体,不应当只认为\mu\approx 0,同样取决于S_{ij},粘性系数很小但S_{ij}很大,同样不能视为无粘。如,问题:理想流体圆柱扰流的雷诺数到底是大还是小(符松)?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值