一、跳台阶
1、题目描述
一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。
输入:一个整数n
输出:跳上n个台阶的跳法种数
2、思路分析
思路和斐波那契数列的类似。
3、实现代码
/**
* @author 0416
* @date 2019/12/6
**/
public class JumpStep {
/**
* Method one
* @param target
* @return
*/
public static int JumpFloor(int target) {
if(target == 0){
return 0;
}
if(target == 1){
return 1;
}
if(target == 2){
return 2;
}
return JumpFloor(target - 1) + JumpFloor(target - 2);
}
/**
* Method two
* @param target
* @return
*/
public static int JumpStep(int target){
if(target == 0){
return 0;
}
int tempOne = 0;
int tempTwo = 1;
for (int i = 1; i <= target; i++) {
int temp = tempOne + tempTwo;
tempOne = tempTwo;
tempTwo = temp;
}
return tempTwo;
}
public static void main(String[] args) {
int result = JumpFloor(13);
System.out.println(result);
int result2 = JumpStep(13);
System.out.println(result2);
}
}
二、变态跳台阶
1、题目描述
一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
输入:一个整数n
输出:跳上n个台阶的跳法种数
2、思路分析
1、动态规划。f(n) = f(n-1) + f(n-2) + … + f(0) ,而且每一级台阶都一定有 1 种跳法。
2、数学公式。
由 f(n) = f(n-1) + f(n-2) + … + f(0) 和 f(n-1) = f(n-2) + f(n-3) + … + f(0) 可得:
f(n-1) = f(n-2) + f(n-3) + … + f(0),即:f(n) = 2 ^ (n - 1)
3、实现代码
/**
* @author 0416
* @date 2019/12/6
**/
public class AdvancedJumpStep {
/**
* Method one
* @param target
* @return
*/
public static int advancedJumpStep(int target){
if(target <= 0){
return 0;
}
int[] times = new int[target];
times[0] = 1;
for (int i = 1; i < target; i++) {
//每级台阶的跳法都初始化为1
times[i] ++;
for (int j = 0; j < i; j++) {
times[i] += times[j];
}
}
return times[target - 1];
}
/**
* Method two
* @param target
* @return
*/
public static int advancedJumpFloor(int target){
if(target <= 0){
return 0;
}
return (int)Math.pow(2, target - 1);
}
public static void main(String[] args) {
System.out.println(advancedJumpStep(13));
System.out.println(advancedJumpFloor(13));
}
}