c++习题: 建立雷达(贪心)

题目描述

一共有 n 个小岛位于 x 轴之上, x 轴为海岸, x 轴上方为海洋。现需要在海岸上建立雷达。
在海岸建立的最少的雷达数目,使得雷达可以覆盖所有的小岛。可以认为每个小岛都是一 个点。
如图所示,三个小岛分别是 P1,P2,P3​, 雷达的半径 d=2, 在 x 轴上建立两个雷达 (−2,0) 和 (1,0)(1 就能覆盖三个小岛。

 

 

输入

输入包含若干组数据,每组数据的第一行是两个整数 n 和 d (1⩽n⩽1000),分别表示小岛的个数和雷达的半径。接下来有 n 行,每行的两个整数分别表示各个小岛的坐标。输入以 0 0 结束。 

输出

对于每组数据输出一行,为最少的雷达数。如果该组数据无解,则输出 −1。

输入输出样例

样例输入 #1

3 2
1 2
-3 1
2 1

1 2
0 2

0 0

样例输出 #1

Case 1:2
Case 2:1

 问题分析:已知雷达(Radar)一定才x轴上,暴力枚举雷达位置的方法显然并不可取。这里我们不妨逆向思维,借助岛屿(islet的位置我们是已知的),来寻找雷达所在的区域区间,这样我们就极大的缩小了时间复杂度。经此分析我们会得到每个雷达的所在区间,这里我们同样舍弃暴力枚举(区间并非一定是整数)。初中数学用维恩图解释过集合与集合之间的数学逻辑关系,现在我们已经知道了n个雷达区间,接下来借助集合关系来确定雷达的最少数量:

(1)、先将区间排序。

(2)、若第i+1区间的左端小于第i区间的右端,那么我们找两个区间共有的部分,用这个小区间便可以证两个大的区间(充分不必要条件)。

(3)、若第i+1区间的左端大于第i区间的右端,那么雷达数量+1,此时我们选第i+1区间的右端在进行(2)、(3)步。在这里,第i+1之后的区间不需要再考虑是否和i+1区间之前的区域是否还有重合的了(因为我们在第一步的时候已经排过序了)。

这样我们就可以很迅速的找到所需最少的雷达数目了!

c++代码:

#include<iostream>
#include<cmath>  //sqrt算术平方根
#include<algorithm> //sort排序
using namespace std;
const int MAXN = 1001;
struct radar {
	double x, y;  //左右
	bool operator <(const radar& c) { //排序,在结构体内部时间复杂度更低
		return x < c.x;
	}
}Radar[MAXN];  //记录区间
int arr[MAXN][2];
int main() {
    bool flag=1;  //判断是否能够找到雷达
	int n, r,num = 0;  //num用于计数
	while (cin >> n >> r) {
		num++;
		if (n + r == 0) break;  //终止条件
		for (int i = 0; i < n; i++) {
			cin >> arr[i][0] >> arr[i][1];
			if(arr[i][1]>r) flag=0;  //找不到雷达
			Radar[i].x = arr[i][0] - sqrt(r * r - arr[i][1] * arr[i][1]);  //区间左侧
			Radar[i].y = arr[i][0] + sqrt(r * r - arr[i][1] * arr[i][1]);  //区间右侧
		}
		sort(Radar, Radar + n);  //从小到大排序
		double k = Radar[0].y;   //从第一个右端开始
		int sum = 1;  //记录下第一个雷达
		for (int i = 1; i < n; i++)
			if (Radar[i].x < k) k = min(Radar[i].y, k);  //第(2)步
			else sum++, k = Radar[i].y;  //第(3)步
		if(flag) cout << "Case " << num << ":" << sum << endl;  //可以找到雷达
        else cout<<"Case "<<num<<":"<<-1<<endl;  //无法找到
	}
	return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值