题目描述
一共有 n 个小岛位于 x 轴之上, x 轴为海岸, x 轴上方为海洋。现需要在海岸上建立雷达。
在海岸建立的最少的雷达数目,使得雷达可以覆盖所有的小岛。可以认为每个小岛都是一 个点。
如图所示,三个小岛分别是 P1,P2,P3, 雷达的半径 d=2, 在 x 轴上建立两个雷达 (−2,0) 和 (1,0)(1 就能覆盖三个小岛。
输入
输入包含若干组数据,每组数据的第一行是两个整数 n 和 d (1⩽n⩽1000),分别表示小岛的个数和雷达的半径。接下来有 n 行,每行的两个整数分别表示各个小岛的坐标。输入以 0 0
结束。
输出
对于每组数据输出一行,为最少的雷达数。如果该组数据无解,则输出 −1。
输入输出样例
样例输入 #1
3 2
1 2
-3 1
2 1
1 2
0 2
0 0
样例输出 #1
Case 1:2
Case 2:1
问题分析:已知雷达(Radar)一定才x轴上,暴力枚举雷达位置的方法显然并不可取。这里我们不妨逆向思维,借助岛屿(islet的位置我们是已知的),来寻找雷达所在的区域区间,这样我们就极大的缩小了时间复杂度。经此分析我们会得到每个雷达的所在区间,这里我们同样舍弃暴力枚举(区间并非一定是整数)。初中数学用维恩图解释过集合与集合之间的数学逻辑关系,现在我们已经知道了n个雷达区间,接下来借助集合关系来确定雷达的最少数量:
(1)、先将区间排序。
(2)、若第i+1区间的左端小于第i区间的右端,那么我们找两个区间共有的部分,用这个小区间便可以证两个大的区间(充分不必要条件)。
(3)、若第i+1区间的左端大于第i区间的右端,那么雷达数量+1,此时我们选第i+1区间的右端在进行(2)、(3)步。在这里,第i+1之后的区间不需要再考虑是否和i+1区间之前的区域是否还有重合的了(因为我们在第一步的时候已经排过序了)。
这样我们就可以很迅速的找到所需最少的雷达数目了!
c++代码:
#include<iostream>
#include<cmath> //sqrt算术平方根
#include<algorithm> //sort排序
using namespace std;
const int MAXN = 1001;
struct radar {
double x, y; //左右
bool operator <(const radar& c) { //排序,在结构体内部时间复杂度更低
return x < c.x;
}
}Radar[MAXN]; //记录区间
int arr[MAXN][2];
int main() {
bool flag=1; //判断是否能够找到雷达
int n, r,num = 0; //num用于计数
while (cin >> n >> r) {
num++;
if (n + r == 0) break; //终止条件
for (int i = 0; i < n; i++) {
cin >> arr[i][0] >> arr[i][1];
if(arr[i][1]>r) flag=0; //找不到雷达
Radar[i].x = arr[i][0] - sqrt(r * r - arr[i][1] * arr[i][1]); //区间左侧
Radar[i].y = arr[i][0] + sqrt(r * r - arr[i][1] * arr[i][1]); //区间右侧
}
sort(Radar, Radar + n); //从小到大排序
double k = Radar[0].y; //从第一个右端开始
int sum = 1; //记录下第一个雷达
for (int i = 1; i < n; i++)
if (Radar[i].x < k) k = min(Radar[i].y, k); //第(2)步
else sum++, k = Radar[i].y; //第(3)步
if(flag) cout << "Case " << num << ":" << sum << endl; //可以找到雷达
else cout<<"Case "<<num<<":"<<-1<<endl; //无法找到
}
return 0;
}