球面距离计算方式(杭州到各城市的球面距离&计算球面距离)

 1)杭州到各城市的球面距离

1、数据来源:自主计算

2、时间跨度:至今

3、区域范围:368个城市

4、指标说明:利用城市经纬度,计算球面距离

部分数据如下:

(2)计算两个点之间的球面距离

1、 数据来源:自主计算

2、时间跨度:至今

3、区域范围:全国31个省及省内城市

4、指标说明:

文件中包含具体的计算代码,该份文件使用python语言计算。

相关研究:

[1]綦建红, 杨丽. 中国OFDI的区位决定因素——基于地理距离与文化距离的检验[J]. 经济地理, 2012, 32(012):40-46.

[2]陈琳, 罗长远. FDI的前后向关联和中国制造业企业生产率的提升——基于地理距离的研究[J]. 世界经济研究, 2011(02):48-53.

[3]曾德明, 任浩, 戴海闻,等. 组织邻近和组织背景对组织合作创新地理距离的影响[J]. 管理科学, 2014(4):12-22.

[4]刘江会, 陈雷, 朱敏. 地理距离、城市网络连通性与IPO折价[J]. 上海经济研究, 2020.

download链接:球面距离计算方式!杭州到各城市的球面距离&计算球面距离-数据集文档类资源-CSDN下载

数据集介绍:神经元细胞核检测数据集 一、基础信息 数据集名称:神经元细胞核检测数据集 图片数量: - 训练集:16,353张 - 测试集:963张 分类类别: - Neuron(神经元细胞核):中枢神经系统的基本功能单位,检测其形态特征对神经科学研究具有重要意义。 标注格式: - YOLO格式,包含边界框坐标及类别标签,适用于目标检测任务 - 数据来源于显微镜成像,覆盖多种细胞分布形态和成像条件 二、适用场景 神经科学研究: 支持构建神经元定位分析工具,助力脑科学研究和神经系统疾病机理探索 医学影像分析: 适用于开发自动化细胞核检测系统,辅助病理诊断和细胞计数任务 AI辅助诊断工具开发: 可用于训练检测神经元退行性病变的模型,支持阿尔茨海默症等神经疾病的早期筛查 生物教育及研究: 提供标准化的神经元检测数据,适用于高校生物学实验室和科研机构的教学实验 三、数据集优势 大规模训练样本: 包含超1.6万张训练图像,充分覆盖细胞核的多样分布状态,支持模型深度学习 精准定位标注: 所有标注框均严格贴合细胞核边缘,确保目标检测模型的训练精度 任务适配性强: 原生YOLO格式可直接应用于主流检测框架(YOLOv5/v7/v8等),支持快速模型迭代 生物学特性突出: 专注神经元细胞核的形态特征,包含密集分布、重叠细胞等真实生物场景样本 跨领域应用潜力: 检测结果可延伸应用于细胞计数、病理分析、药物研发等多个生物医学领域
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

T0620514

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值