注:
题目:
给定一个字符串,你的任务是计算这个字符串中有多少个回文子串。
具有不同开始位置或结束位置的子串,即使是由相同的字符组成,也会被视作不同的子串。
示例 1:
输入:“abc”
输出:3
解释:三个回文子串: “a”, “b”, “c”
示例 2:
输入:“aaa”
输出:6
解释:6个回文子串: “a”, “a”, “a”, “aa”, “aa”, “aaa”
题解:
思路与算法
计算有多少个回文子串的最朴素方法就是枚举出所有的回文子串,而枚举出所有的回文字串又有两种思路,分别是:
枚举出所有的子串,然后再判断这些子串是否是回文;
枚举每一个可能的回文中心,然后用两个指针分别向左右两边拓展,当两个指针指向的元素相同的时候就拓展,否则停止拓展。
假设字符串的长度为 n。我们可以看出前者会用 O(n^2)的时间枚举出所有的子串,然后再用 O(r - l+ 1)的时间检测当前的子串是否是回文,整个算法的时间复杂度是 O(n^3)。而后者枚举回文中心的是 O(n) 的,对于每个回文中心拓展的次数也是 O(n) 的,所以时间复杂度是 O(n^2)。所以我们选择第二种方法来枚举所有的回文子串。
在实现的时候,我们需要处理一个问题,即如何有序地枚举所有可能的回文中心,我们需要考虑回文长度是奇数和回文长度是偶数的两种情况。如果回文长度是奇数,那么回文中心是一个字符;如果回文长度是偶数,那么中心是两个字符。当然你可以做两次循环来分别枚举奇数长度和偶数长度的回文,但是我们也可以用一个循环搞定。我们不妨写一组出来观察观察,假设 n=4,我们可以把可能的回文中心列出来:
i 左 右
0 0 0
1 0 1
2 1 1
3 1 2
4 2 2
5 2 3
6 3 3
由此我们可以看出长度为 nn 的字符串会生成 2n-1组回文中心 [l, r],其中 l=i/2,r = l + (i mod 2)。这样我们只要从 0 到 2n−2 遍历 i,就可以得到所有可能的回文中心,这样就把奇数长度和偶数长度两种情况统一起来了。
class Solution {
public:
int countSubstrings(string s) {
int n=s.size();
int left=0;
int right=0;
int result=0;
for(int i=0;i<2*n-1;i++){
left=i/2;
right=left+i%2;
while(left>=0&&right<n&&s[left]==s[right]){
left--;
right++;
result++;
}
}
return result;
}
};