注:
题目:
给你一个字符串 s 和一个整数 k ,请你找出 s 中的最长子串, 要求该子串中的每一字符出现次数都不少于 k 。返回这一子串的长度。
示例 1:
输入:s = “aaabb”, k = 3
输出:3
解释:最长子串为 “aaa” ,其中 ‘a’ 重复了 3 次。
示例 2:
输入:s = “ababbc”, k = 2
输出:5
解释:最长子串为 “ababb” ,其中 ‘a’ 重复了 2 次, ‘b’ 重复了 3 次。
提示:
1 <= s.length <= 104
s 仅由小写英文字母组成
1 <= k <= 105
题解:
思路及算法
- 如果一个字符 c 在 s 中出现的次数少于 k 次,那么 s 中所有的包含 c 的子字符串都不能满足题意。所以,应该在 s 的所有不包含 c 的子字符串中继续寻找结果:把 s 按照 c 分割(分割后每个子串都不包含 c),得到很多子字符串 t。
- 下一步要求 t 作为源字符串,求它的最长的满足题意的子字符串长度(到现在为止,我们把大问题分割为了小问题(s → t))
复杂度分析
时间复杂度:O(N⋅∣Σ∣),其中 N 为字符串的长度,Σ 为字符集,本题中字符串仅包含小写字母,因此∣Σ∣=26。由于每次递归调用都会完全去除某个字符,因此递归深度最多为∣Σ∣。
空间复杂度:O(∣Σ∣2 )。递归的深度为O(∣Σ∣),每层递归需要开辟 O(∣Σ∣) 的额外空间。
class Solution {
public:
int dfs(string s,int l,int r,int k){
if(l>r){
return 0;
}
//统计[l,r]区间内个字母的出现次数
map<char,int> charsnum;
for(int i=l;i<=r;i++){
charsnum[s[i]]++;
}
//找到[l,r]区间内出现次数不足k的字母split
char split='1';
for(auto c:charsnum){
if(c.second>0&&c.second<k){
split=c.first;
}
}
//如果在[l,r]区间内没找到出现次数不足k的字母,则返回当前区间的长度
if(split=='1'){
return r-l+1;
}
//在split左右两侧进行分治
int i=l;
int res=0;
while(i<=r){
while(i<=r&&s[i]==split){
i++;
}
if(i>r){
break;
}
int start=i;
while(i<=r&&s[i]!=split){
i++;
}
res=max(res,dfs(s,start,i-1,k));
}
return res;
}
int longestSubstring(string s, int k) {
int l=0;
int r=s.size()-1;
return dfs(s,l,r,k);
}
};