注:
题目:
给你一个整数数组 nums ,找出并返回所有该数组中不同的递增子序列,递增子序列中 至少有两个元素 。你可以按 任意顺序 返回答案。
数组中可能含有重复元素,如出现两个整数相等,也可以视作递增序列的一种特殊情况。
示例 1:
输入:nums = [4,6,7,7]
输出:[[4,6],[4,6,7],[4,6,7,7],[4,7],[4,7,7],[6,7],[6,7,7],[7,7]]
示例 2:
输入:nums = [4,4,3,2,1]
输出:[[4,4]]
提示:
1 <= nums.length <= 15
-100 <= nums[i] <= 100
题解:
这个递增子序列比较像是取有序的子集。而且本题也要求不能有相同的递增子序列。
这又是子集,又是去重,是不是不由自主的想起了刚刚讲过的leetcode 90:求子集问题(二)。
就是因为太像了,更要注意差别所在,要不就掉坑里了!
leetcode 90:求子集问题(二) 中我们是通过排序,再加一个标记数组来达到去重的目的。
而本题求自增子序列,是不能对原数组经行排序的,排完序的数组都是自增子序列了。
所以不能使用之前的去重逻辑!
本题给出的示例,还是一个有序数组 [4, 6, 7, 7],这更容易误导大家按照排序的思路去做了。
为了有鲜明的对比,我用[4, 7, 6, 7]这个数组来举例,抽象为树形结构如图:
同时还需要注意的是,本题需要收集所有的长度大于1的节点,而不是收集叶子结点。
复杂度分析
时间复杂度:O(2n * n)。仍然需要对子序列做二进制枚举,枚举出的序列虽然省去了判断合法性和哈希的过程,但是仍然需要 O(n) 的时间添加到答案中。
空间复杂度:O(n)。这里临时数组的空间代价是 O(n),递归使用的栈空间的空间代价也是 O(n)。
class Solution {
public:
vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& nums,int index){
if(index>nums.size()){
return ;
}
unordered_set<int> visited;
for(int i=index;i<nums.size();i++){
//这个元素在本层用过了,直接跳过该元素
if(visited.find(nums[i])!=visited.end()){
continue;
}
//不是递增序列,跳过该元素
if(path.size()>0&&path[path.size()-1]>nums[i]){
continue;
}
path.push_back(nums[i]);
//记录本层使用过的元素,由于每层的visited都是新的,因此visited不需要回溯
visited.insert(nums[i]);
if(path.size()>1){
result.push_back(path);
}
backtracking(nums,i+1);
path.pop_back();
}
}
vector<vector<int>> findSubsequences(vector<int>& nums) {
backtracking(nums,0);
return result;
}
};