网络智能化/通信AI十大方向-信道建模预测之 基于AI的CSI压缩反馈

中国移动智慧网络人工智能开放创新平台上线了CSI压缩反馈数据和任务

1.大规模MIMO技术背景

        大规模MIMO 技术具有空间复用增益、分集增益及波束赋形能力,通过在发射端和接收端配置多根天线实现多收多发,充分利用空间资源,在不增加频谱资源和发射功率的前提下,成倍提高信道容量并减少多用户干扰,具有显著的性能优势。但是这些增益建立在基站能够精确获知上行链路和下行链路信道状态信息(CSI, channel state information)的前提下。

2.大规模MIMO信道状态信息反馈面临挑战

        上行链路的CSI 获取较容易,用户端发送训练导频,再由基站根据接收到的信号估计每个用户的信道响应;而下行链路的CSI 获取则较困难,也是需要重点解决的难题。

        在时分双工(TDD, time division duplex)制式下,基站可通过上行链路发送的训练导频进行信道估计,再利用信道互易性获取下行链路的CSI。

        在频分双工(FDD, frequency division duplex)制式下,上行链路和下行链路工作在不同的频点上,信道互易性很弱,因此,下行链路的CSI 需要先由用户端通过下行导频估计获得,再通过反馈链路传送回基站端。

        完整的CSI 回传需要消耗大量的空口资源开销,所以协议中通常采用矢量量化(VQ, vector quantization)或基于码本的方法降低开销,但这些方法在一定程度上损失了信道信息,且其产生的反馈量会随着发射天线数量的增大而成倍增加。大规模MIMO 系统中基站端使用大规模天线阵列,使得码本设计复杂度和相应的反馈量显著增长,因此,传统反馈方案在大规模MIMO 系统中是不可取的。

3.传统技术手段及面临问题

        研究发现随着基站天线数量增加,用户端在空频域的信道矩阵因基站有限的局部散射体可被表示成一种稀疏形式。因此,基于压缩感知(CS, compressive sensing)的CSI 反馈方案被提出。

        理论上,具有相关性的CSI在某些基底上可以变换为不相关的稀疏向量,然后利用CS 方法对其进行随机投影来获得降维的测量值;该测量值在占用少量资源开销的情况下通过反馈链路传送回基站,基站再根据CS 算法从低维压缩测量值中恢复出原始的稀疏信道向量。

        通过利用CSI 的空时相关性,CS 方法不依赖于统计数据,简化了压缩过程且在一定程度上减少了反馈开销。然而,传统基于CS 的方法仍然存在以下3 个问题:

        1) CS 方法严重依赖于信道结构的先验假设,即信道在某些变换基上满足稀疏性,而实际信道在任何基底上都不是完全稀疏的,甚至可能没有可解释的结构;

        2) CS 方法使用随机投影来获得低维压缩信号,并没有充分利用信道的结构特征;

        3) 现有的用于CSI 恢复的CS 算法多为迭代算法,具有较大的计算开销和较慢的运行速度,不满足实际系统的实时性要求。

        因此,一种能将CSI信息高度压缩以降低传输开销,且可以从高度压缩的反馈信息中快速、准确地恢复CSI的大规模MIMO反馈机制亟待提出,突破性新技术的引入迫在眉睫。

4. 已有AI技术手段

4.1基于深度学习的CSI 反馈架构CsiNet

        CsiNet的结构类似于自动编码器,包括编码器和译码器两部分。

  • 编码器属于用户端,用于CSI压缩,即利用信道矩阵的稀疏特性将原先N 维的信道矩阵压缩成M 维的码字。
  • 译码器属于基站端,用于CSI重建,即将接收到的码字s 恢复成原始的信道矩阵

        CsiNet 的工作机制可归纳如下:用户端在接收到空频域的信道矩阵后,通过二维DFT 获得截断矩阵 ,然后使用编码器生成一个压缩码字s ;接着码字s通过反馈链路被回传到基站,基站接收到码字s 后,用译码器来重建角度时延域的信道矩阵 ;最后,通过逆DFT 得到空频域的恢复信道矩阵。

        CsiNet 网络结构如图1 所示。

4.2基于长短期记忆网络的CSI 反馈(CsiNet-LSTM)

        在许多典型的大规模MIMO 应用场景下信道变化缓慢,采集的一帧信道数据具有时间相关性,可以利用这种时间相关性对信道矩阵进行更高效的压缩。

        长短期记忆网络(LSTM, long short-term memory)对CsiNet 架构进行扩展,提升网络在压缩率和恢复质量间的折中。

        在CsiNet-LSTM 网络结构中,CsiNet 编码器和CsiNet 译码器两个模块沿用了CsiNet 中的网络结构。在对信道矩阵进行角度时延域特征提取和恢复重建时,CsiNet-LSTM 采用了两种不同的压缩率。第一个CsiNet 模块采用高压缩率,从而能够保留第一个信道矩阵足够的结构信息以进行后续的高分辨率恢复。由于剩余信道与第一个信道间存在相关性,包含的有效信息量较少,因此,之后的T-1个信道矩阵均可执行低压缩率的编码。在进行恢复重建前,将第一个高压缩率编码的码字串联到所有低压缩率码字的前面,充分利用信道相关性信息进行译码。将译码后的输出构成长度为T 的序列送入3 层LSTM 中,LSTM 通过前一时刻的输入能够隐式地学习时间相关性,再与当前时刻的输入合并,从而提高低压缩率的重建质量。

4.3基于双向信道互易性的CSI 反馈

        FDD 系统由于上行链路和下行链路工作在不同频段上,信道互易性不明显,因此,需要用户端将下行链路CSI 反馈回基站。由于上、下行链路的信道都可表示成由多径和散射体等组成的物理环境的函数,现有研究表明,FDD 系统的双向信道间存在一定的相关性,因此,文献[25]侧重于研究FDD 系统中上、下行链路CSI 的相关性,利用上行链路CSI 提高下行链路CSI 的恢复精度。

        利用上、下行链路CSI 幅度和绝对值间的相关性,提出了两种CSI反馈架构DualNet-MAG 和DualNet-ABS,减少了CSI 的反馈开销并提高重建精度。

        用户端首先将需要反馈的下行链路CSI 的幅度和相位进行分离,将幅度通过编码器进行压缩编码后反馈回基站,而相位则直接基于幅度分布进行量化再反馈回基站,因此总反馈开销中的较大比例来自于相位反馈。在进行CSI 重建时,基站对反馈得到的下行幅度和估计得到的上行幅度进行联合译码,充分利用双向互易性提高幅度的重建精度,再加上反馈得到的量化相位即可恢复出下行CSI。

        DualNet-MAG 网络结构如图3 所示,DualNet-ABS 的结构与其类似。

4.4基于时间相关性的CSI 差分反馈

        在大规模MIMO 系统中,采集的信道数据序列具有时间相关性,这是因为CSI 反馈周期小于信道相干时间[24],而时间相关性是可以对信道矩阵进行高效压缩的。

        差分反馈网络在起始时刻t1处,需要在较大压缩率的前提下进行CSI 高精度反馈,这是为了给后续CSI 反馈提供更精确的先验信息。从t2时刻开始,差分反馈网络将进行预测误差的反馈,与t1时刻的过程相比,差分反馈网络可以在先验信息的支撑下实现高反馈带宽效率,并且只使用了较小的压缩率。

5.国家级智慧网络开放创新平台-基于AI的CSI压缩反馈开放任务

5.1使用AI手段研究面临的问题

        将以深度学习(DL, deep learning)技术为代表的人工智能引入大规模MIMO信道状态信息反馈方案中为解决CSI 反馈难题提供了新的设计思路,但使用AI技术仍面临如下几个问题:

  1. 研究人员需要搭建仿真能力构建数据集

        为了满足研究需要,研究人员需要搭建仿真按照研究需要输出大量相关数据集进行研究,在仿真能力上耗费了大量的时间。

     2. 模型泛化性不好,需要丰富的数据进行泛化性研究

        模型的泛化性一直是业界研究的一个热点方向,对于研究模型泛化性的人员,需要更加丰富场景的数据集进行模型训练,需耗费大量的精力搭建仿真能力,并耗费较长时间生成数据集。

     3.缺乏网络系统性的评估指标

        已有的算法模型评估较多基于重建精度来评估(如NMSE或余弦相似度),并未将模型应用在系统中验证网络性能指标,目前缺乏一个能够将模型嵌入到通信系统中的仿真器。

5.2基于AI的CSI压缩反馈任务介绍

        基于以上研究背景,“智慧网络”国家新一代人工智能开放创新平台构建了基于AI的CSI压缩反馈开放任务,用户可使用平台提供的AI算法开发、训练环境,并在线使用丰富数据集及可灵活自配置参数的构建数据集的仿真能力进行AI模型训练,可满足模型精度及模型泛化性等多种研究需求。此外在该任务中还提供了一种可验证AI模型在整个通信过程中效果的系统级仿真环境,并提供了多种系统级指标进行算法多维度的验证、评估。

5.3平台开放任务优势

        基于AI研究的痛点问题,开放了该研究任务,平台的优势如下:

  1. 平台提供AI算法开发,训练环境
  2. 平台提供丰富的数据集
  3. 平台提供生成数据集的仿真能力,可根据研究需要配置参数生成数据集
  4. 平台提供系统仿真能力及多种通信指标可对AI模型进行在线推理验证、评估
  5. 平台提供了数据接口及消息接口调用数据集及仿真能力

5.4平台开放任务研究目标

        该任务希望吸引AI算法研究人员参与研究通信AI算法,对于该任务主要从以下几个方面考察算法:

  1. 信道特征信息反馈精度(NSME)
  2. 信道特征信息反馈对网络性能影响
  3. 信道特征信息反馈开销即压缩率
  4. 不同信道环境下的模型泛化性

6.总结

        深度学习( Deep Learning,DL) 为解决大规模MIMO 系统中的CSI 反馈问题提供了新的思路。虽然基于深度学习的CSI 反馈技术在一定程度上弥补了传统方法的不足,在未来移动通信系统的应用中有极大的潜力,但无线通信系统在模型泛化性和超低时延上的挑战,要求着更深入、更高效、更精确、更普适的AI算法输出,同时也期待着满足此类AI算法孵化需求的数据与环境支持。

        基于此,开放创新平台上开放了基于AI的CSI压缩反馈任务,为研究人员提供开放的仿真能力及数据集,满足多样的研究需求。

中国移动 - 智慧网络新一代人工智能开放创新平台 (10086.cn)

<think>好的,用户的问题是关于下行CSI压缩反馈中使用Lasso算法的实现方法。首先,我需要确认自己对CSI压缩反馈和Lasso算法的理解是否正确。CSI(Channel State Information)是无线通信中用来描述信道状态的信息,对于下行链路来说,基站需要获取用户的CSI来优化传输。而压缩反馈是为了减少反馈开销,将高维的CSI数据压缩后传输。 接下来,Lasso(Least Absolute Shrinkage and Selection Operator)是一种用于回归分析的线性模型,它通过L1正则化来促进稀疏性,适用于高维数据。在CSI压缩中,可能利用Lasso的稀疏性特性来恢复压缩后的信道信息。用户提到的现有算法(文献5、6)使用简单稀疏先验,但信道矩阵并非完全稀疏,只是近似稀疏,导致恢复效果不佳。因此,用户可能希望了解如何改进或应用Lasso来解决这个问题。 需要明确Lasso在CSI压缩中的具体应用步骤。首先,CSI矩阵通常可以表示为稀疏形式,例如在角度-时延域中的近似稀疏性。压缩感知理论中,测量矩阵的设计和稀疏恢复算法是关键。Lasso作为回归方法,可以用于解决这类优化问题,即最小化观测数据与预测数据之间的误差,同时施加L1正则化。 然后,我需要考虑具体的实现步骤。可能包括以下几个部分:信道建模、稀疏表示、压缩观测、Lasso优化问题的构建与求解,以及最后的反馈步骤。每个步骤需要详细说明,例如如何将CSI投影到稀疏基,如何设计测量矩阵,以及如何用Lasso求解稀疏系数。 另外,用户可能需要具体的数学表达式和算法实现。例如,稀疏表示可以用数学公式表达为$\mathbf{h} = \mathbf{\Psi}\mathbf{s}$,其中$\mathbf{\Psi}$是稀疏基,$\mathbf{s}$是稀疏向量。压缩观测则是$\mathbf{y} = \mathbf{\Phi}\mathbf{h} + \mathbf{n}$,其中$\mathbf{\Phi}$是测量矩阵。Lasso的目标函数是$\min_{\mathbf{s}} \frac{1}{2}||\mathbf{y} - \mathbf{\Phi}\mathbf{\Psi}\mathbf{s}||_2^2 + \lambda ||\mathbf{s}||_1$,需要解释每个部分的意义。 还要考虑实现中的具体问题,比如如何选择正则化参数$\lambda$,如何优化求解(如坐标下降法、近端梯度法),以及可能的性能指标(如NMSE、反馈开销减少量)。此外,用户可能关心如何在实际系统中应用,例如在3GPP标准中的类型II CSI反馈架构中的整合。 可能的相关问题包括Lasso与其他算法(如OMP)的比较,参数调优方法,复杂度分析,以及如何应对信道时变特性。需要确保回答结构清晰,逐步引导用户理解实现方法,并引用相关文献支持关键点,如文献[^1]提到的现有算法的局限性。</think>### 下行CSI压缩反馈中Lasso算法的实现方法 #### 1. **问题建模与稀疏表示** 在频分双工(FDD)系统中,下行CSI通常表示为高维复数矩阵$\mathbf{H} \in \mathbb{C}^{N_t \times N_s}$($N_t$为发射天线数,$N_s$为子载波数)。通过**稀疏变换基$\mathbf{\Psi}$**(如DFT矩阵或角度-时延域变换),可将信道矩阵近似稀疏表示为: $$ \mathbf{H} = \mathbf{\Psi} \mathbf{S} $$ 其中$\mathbf{S}$为稀疏系数矩阵。压缩反馈的目标是将$\mathbf{H}$压缩为低维观测向量$\mathbf{y}$,并通过优化算法恢复$\mathbf{S}$。 #### 2. **压缩观测与Lasso建模** - **压缩观测**:使用测量矩阵$\mathbf{\Phi} \in \mathbb{C}^{M \times N}$($M \ll N$)对信道进行线性投影: $$ \mathbf{y} = \mathbf{\Phi} \mathbf{H} + \mathbf{n} $$ 其中$\mathbf{n}$为噪声。 - **Lasso优化目标**:通过L1正则化约束求解稀疏系数: $$ \min_{\mathbf{S}} \frac{1}{2} \|\mathbf{y} - \mathbf{\Phi} \mathbf{\Psi} \mathbf{S}\|_2^2 + \lambda \|\mathbf{S}\|_1 $$ 这里$\lambda$控制稀疏度与重构误差的平衡。 #### 3. **算法实现步骤** 1. **稀疏基选择**:根据信道特性选择$\mathbf{\Psi}$(如角度-时延域DFT基)。 2. **测量矩阵设计**:采用高斯随机矩阵或结构化矩阵(如部分傅里叶矩阵)。 3. **Lasso求解**:使用坐标下降法或近端梯度法迭代求解,例如: ```python from sklearn.linear_model import Lasso model = Lasso(alpha=λ, max_iter=1000) model.fit(ΦΨ, y) # ΦΨ为测量矩阵与稀疏基的乘积 S_hat = model.coef_ ``` 4. **重构与反馈**:恢复信道矩阵$\hat{\mathbf{H}} = \mathbf{\Psi} \hat{\mathbf{S}}$,并量化压缩后的$\hat{\mathbf{S}}$进行反馈。 #### 4. **性能优化关键** - **正则化参数调优**:通过交叉验证选择$\lambda$,平衡NMSE(归一化均方误差)与稀疏度。 - **结构化先验增强**:结合信道空间相关性,改进Lasso目标函数为: $$ \min_{\mathbf{S}} \frac{1}{2}\|\mathbf{y} - \mathbf{\Phi} \mathbf{\Psi} \mathbf{S}\|_2^2 + \lambda \|\mathbf{S}\|_1 + \gamma \|\mathbf{S}\|_{2,1} $$ 其中$\|\cdot\|_{2,1}$为组稀疏正则项,提升块稀疏性。 - **量化策略**:对非零系数位置和幅度进行熵编码,进一步压缩反馈量。 #### 5. **与3GPP标准的结合** 在类型II CSI反馈架构中,Lasso恢复的稀疏系数可直接映射到PMI(预编码矩阵指示)和CQI(信道质量指示),通过PUCCH/PUSCH信道反馈给基站。 ```python # 简化的Lasso CSI反馈示例 import numpy as np from sklearn.linear_model import Lasso # 生成稀疏CSI(角度-时延域) Nt, Ns = 64, 32 # 64发射天线,32子载波 Psi = np.fft.fft(np.eye(Nt)) # DFT稀疏基 S_true = np.zeros((Nt, Ns)) S_true[10:15, 5:8] = 1 + 1j # 局部非零块 H = Psi @ S_true # 真实信道矩阵 # 压缩观测 M = 128 # 观测维度 Phi = np.random.randn(M, Nt) # 高斯测量矩阵 y = Phi @ H[:, 0] # 单子载波观测 # Lasso恢复 lasso = Lasso(alpha=0.1) lasso.fit(Phi @ Psi, y.real) # 处理实部(复信号需分离实虚部) S_hat = lasso.coef_ + 1j * lasso.fit(Phi @ Psi, y.imag).coef_ # 重构信道 H_hat = Psi @ S_hat ``` #### 6. **性能指标** - **归一化均方误差(NMSE)**:$\text{NMSE} = \frac{\|\hat{\mathbf{H}} - \mathbf{H}\|_F^2}{\|\mathbf{H}\|_F^2}$ - **反馈压缩比**:$R = \frac{M + K}{N_t N_s}$($K$为非零系数数量) ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

网智圈--一起AI赋能网络

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值