the only KIrsTEN
码龄4年
关注
提问 私信
  • 博客:228,934
    社区:21
    228,955
    总访问量
  • 180
    原创
  • 2,223,515
    排名
  • 3,968
    粉丝
  • 21
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:四川省
  • 目前就职: 华为技术有限公司
  • 加入CSDN时间: 2021-01-06
博客简介:

kirsten111111的博客

查看详细资料
个人成就
  • 获得123次点赞
  • 内容获得25次评论
  • 获得270次收藏
  • 代码片获得297次分享
创作历程
  • 52篇
    2023年
  • 89篇
    2022年
  • 39篇
    2021年
成就勋章
TA的专栏
  • python
    付费
    23篇
  • 语音和文本处理(Python)
    付费
    25篇
  • 通信(python+AI)
    2篇
  • Java
    31篇
  • Ruby
    9篇
  • 算法逻辑
    25篇
  • 3D
    23篇
  • haskell
    18篇
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Python代码用多种方式实现识别文本风格和作者数量(SVM,LogicRegression)

运行文件(‘D:/Final/Others/main.py’,args=‘-i test-o result1’,wdir='D:/Final/Others)类似地,如果想要获得svc结果,那么将LogisticRegression.pickle更改为svc.pickle,那么它就可以工作了。首先,打开generate_text_features.py,直接运行生成一个名为features的文件夹。其次,打开task1.py并直接运行以生成一个名为saved_models的文件夹。注意:运行时记得改变路线。
原创
发布博客 2023.10.09 ·
586 阅读 ·
2 点赞 ·
1 评论 ·
2 收藏

实现文本的作者风格识别(SVM/LogicRegression/Bert)

发布资源 2023.10.09 ·
pdf

基于BERT模型进行文本处理(Python)

这些信息可以从JSON文件中获得,但在这种情况下,我们使用前面在数据中提到的CSV文件中第二列的更改。该模型是在标记的数据集上使用损失函数进行训练的,该函数测量预测作者和真实作者之间的差异。训练后,使用单独的数据集对模型进行验证,以评估其准确性,并进行任何必要的调整以提高其性能。当有四个以上的作者时,检测所有作者是很困难的,当只有一个段落是由另一个作者写的时,识别格式也是很有挑战性的。这是因为,要确定一份文档是单作者还是多作者,需要了解文档的结构和内容,并分析整个文本中使用的写作风格。
原创
发布博客 2023.10.08 ·
963 阅读 ·
2 点赞 ·
0 评论 ·
2 收藏

AI 大框架基于python来实现基带处理之TensorFlow(信道估计和预测模型,信号解调和解码模型)

在回归问题中,均方误差可以用来评估模型的性能,其中较小的均方误差表示模型的预测与真实值更接近。对于具有n个可能取值的离散变量,one-hot编码将其表示为长度为n的二进制向量,只有对应取值的位置上为1,其他位置上为0。解码的目标是将这些符号、样本或编码数据映射回原始的数字数据,以还原最初的信息。Sequential模型是TensorFlow中的一种模型,它允许我们按照顺序将不同的层组合在一起,构建一个多层的神经网络。具体来说,我们可以将接收到的信号数据作为模型的输入,将已知的信道状态或特性作为模型的输出。
原创
发布博客 2023.10.06 ·
1525 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

AI 大框架分析基于python之TensorFlow(归一化处理,多类别分类的概率)

它是一个元组(x_val, y_val),其中x_val是用于验证模型性能的输入数据,y_val是对应的标签数据。它是一个形状为(n_samples, n_features)的NumPy数组,其中n_samples表示训练样本的数量,n_features表示每个样本的特征数量。模型将预测的概率最大的类别作为最终的分类结果。例如,对于一个具有3个类别的分类问题,输出层使用了softmax激活函数后,输出的向量可以表示为 [0.2, 0.5, 0.3],其中每个元素的值表示对应类别的概率。
原创
发布博客 2023.10.06 ·
1081 阅读 ·
1 点赞 ·
2 评论 ·
3 收藏

练习:缺陷Defects/感染Infections/失败Failure

因此,缺陷被执行并且感染不会发生——当 (1) x 为空(零长度)或 (2) y 在 x 中,但 y 不是 x 的第一个元素时。(a) 当条件 x[i] % 2 == 1 对于负数计算结果为 false 时,感染发生,因为根据方法的规范,正确的条件应该计算为 true。(a) 在该方法中,x[i] % 2 应该是 Math.abs(x[i] % 2),因为单独条件“x[i] % 2 == 1”不会包括要计算的负数 作为奇数(因为负奇数的 x[i] % 2 是 -1)。(a) 是,当 y 不在 x 中时。
原创
发布博客 2023.06.08 ·
616 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

练习:测试最小化和优先化

此外,b3 仅被测试用例 t1 覆盖,而 t1 也覆盖了 b7,因此一旦添加了 t1,算法就会停止。给定六个测试用例的排序,我们可以查看前 n 个测试用例提供的覆盖率,其中 1 ≤ n ≤ 6。首先选择 t5,因为它比其他的有更多的测试用例(5 个测试用例)。首先选择 t5,因为它比其他的有更多的测试用例(5 个测试用例)。• t5 的执行会覆盖以下分支:b2、b5、b8、b9、b10。• t3 的执行会覆盖以下分支:b1、b4、b8、b10。• t1 的执行会覆盖以下分支:b1、b3、b7。
原创
发布博客 2023.06.07 ·
747 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

输入域分析问题与解答

在输入域分析的背景下,基于接口的输入域建模可以包括确定系统与超市系统之间的接口,例如购物车接口、价格计算接口、订单接口等。但是,如果顾客选择送货上门,那么如果他们居住在距离超市 3 公里以内的地方,他们将被收取 3 英镑的费用,否则将被收取 7 英镑的费用。c) 通过将基于功能的输入域建模应用于问题开头的示例,我们可以根据问题描述识别不同的功能和规则,并设计相应的测试输入。这些测试输入是根据问题。解释:通过考虑购买折扣商品数量的边界情况,我们可以验证系统在不同数量折扣商品的情况下是否正确计算成本和总成本。
原创
发布博客 2023.06.07 ·
162 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

练习:有限状态机测试

两者都有输入字母 X = {a, b} 和输出字母 Y = {0,1}。2.对于 Mi 的每个状态 s,找到一个使 Mi 从其初始状态到状态 s 的输入序列。在每种情况下,确定这是否是最短的此类输入序列。4.评论这是否是最短的过渡游。如果不是,则生成最短的过渡行程。从状态 s0 输出序列为 1。从状态 s1 输出序列为 1。从状态 s2 输出序列为 1。从状态 s3 输出序列为 0。从状态 s0 输出序列为 0。从状态 s1 输出序列为 0。从状态 s2 输出序列为 0。从状态 s3 输出序列为 1。
原创
发布博客 2023.06.07 ·
1177 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

练习:程序切片

由于直接影响“x”值的唯一语句是“x = x + y”,因此它是前向切片中包含的唯一语句。循环中的其他语句,例如“y”的递减,不直接影响“x”的值,因此在这个特定上下文中不是前向切片的一部分。在这里我们可以观察到,当我们到达 if 语句时,我们有 y=3,因此我们采用了“then”的情况。但是,我们现在可以从中删除第一条语句,因为它不会影响 x 的最终值(此处分配的值将被下一条语句分配的值覆盖)。程序的正向切片是指在程序的特定点直接或间接影响特定变量值的语句和变量的集合。删除片段的每个部分。
原创
发布博客 2023.06.07 ·
475 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

程序切片问题与解答

通过给出上面给出的代码片段关于变量 z 的最小动态结束切片来说明你的答案,假设输入有 1 分配给 x,7 分配给 y,2 分配给 z。在 y 的初始值至少为 2 的条件下,通过给出上面给出的关于变量 y 的代码片段的最小条件结束切片来说明你的答案。程序 p 的一个(静态的,向后的)程序切片 s 是根据切片标准 (V , n) 构建,其中 V 是一组变量名,n 是程序点。程序 p 的一个(静态的,向后的)程序切片 s 是根据切片标准 (V , n) 构建,其中 V 是一组变量名,n 是程序点。
原创
发布博客 2023.06.05 ·
582 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

区分序列/UIO/特征集示例

让我们假设我们有一个状态集 S 的 FSM M。还假设我们知道通过转换 t 达到的当前状态是 s 或 s0。我们如何确定 t 到达了哪个状态?分离状态输入序列 w 将两个状态 s 和 s0 分开,如果: 对 w 的响应在 s 和 s0 中不同。
原创
发布博客 2023.06.04 ·
841 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

if/while/for/语句/分支/路径覆盖的控制流程图+数据流分析(DU)

• Branch Coverage 更有可能发生这种情况: 不可行的分支指向代码中的冗余决策。并非所有通过 CFG 的路径在实际代码中都是合法可行的。某些版本的路径覆盖专注于每个循环的 0、1 或更多次执行,以减少可能无限数量的路径!• 这也可能发生在声明覆盖范围内: 不可行的语句指向死代码。• 结构覆盖级别是了解测试套件执行了多少代码的有用指标。通过 countZeros 的路径数取决于 x 的长度。测试套件应执行 CFG 的所有真/假边缘。测试套件应执行通过 CFG 的所有路径。
原创
发布博客 2023.06.03 ·
1585 阅读 ·
3 点赞 ·
0 评论 ·
6 收藏

找到 FSM 的区别序列、UIO 或特征集(W方法)

许多系统都是基于状态的:它们有一个更新的内部状态通过操作并影响行为。在测试这样一个系统时,一个需要考虑状态。这导致了一系列的语言,用于描述基于状态的规范和模型,这些可以在许多应用领域。比如嵌入式的开发汽车和航空电子工业中的控制系统通常使用以状态图形式编写的基于状态的模型。如果我们有一个基于状态的模型,那么就有可能利用这在测试中。例如,我们可以考虑覆盖率的简单概念(例如执行转换的比例),此外,如果我们可以提供一个具有形式语义的模型,然后我们可以以此为基础用于自动化部分测试。
原创
发布博客 2023.06.03 ·
685 阅读 ·
2 点赞 ·
0 评论 ·
1 收藏

有限状态机器测试(过渡游览法)

在此示例中,“错误”状态表示仅当存在与硬币接受或机器故障等问题相关的状态转换时才会发生的故障情况。引入附加状态来处理状态转换期间发生的故障情况的概念可以应用于需要错误处理的各种系统和场景。在这种情况下,我们可以引入一个称为“Error”的附加状态来表示仅在存在状态转换时才会发生的故障情况。FSM M 的两个状态 s 和 s0 被输入分开序列 x 如果:M 对 x 的响应在状态 s 是不同的和 s0 (λ^(4)最小化minimal。我们将看到第二个问题的解决方案(发现状态转移错误)帮助我们找到额外的状态。
原创
发布博客 2023.06.02 ·
435 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

基于状态的系统和有限状态机FSM

基于模型进行测试。模型可能是规格或描述感兴趣的属性。该模型通常是一个抽象概念,应该相对容易理解。测试补充了白盒方法。测试通常是黑盒:不考虑实际系统的结构。如果模型具有形式语义,则可实现的主要好处:我们就有了自动化的潜力。大部分工作使用基于状态的语言 state-based languages。
原创
发布博客 2023.06.02 ·
503 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

向后切片,正向切片和其他形式的切片

生成的切片提供了原始程序的一个子集,该子集捕获与切片标准相关的依赖关系和行为,有助于各种软件工程任务,例如调试、程序理解和代码优化。通过删除不影响切片标准的语句,生成的动态切片变得更小,并且更专注于直接有助于观察到的行为的程序的基本部分。当我们说某些语句不影响动态(向后)切片中特定输入的切片标准时,这意味着从程序中删除或删除这些语句不会改变导致满足切片标准的计算或行为或 为该输入触发。在程序切片中,切片标准指的是计算切片的特定程序点或感兴趣的变量。这是由 n 和分配给 n 的变量形成的标准的前向切片。
原创
发布博客 2023.06.01 ·
2269 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

生成程序片段(程序依赖图PDG)

语句 3 对语句 1 的依赖性是因为变量 x 的值在语句 3 中被修改 (x = x - 1),并且该修改后的值被用于语句 1 中 while 循环的条件表达式中 (while (x > 0)). 语句 3 中 x 的更新会影响语句 1 中的循环条件。语句 3 中 x 的更新值 (x = x - 1) 用于计算语句 2 中的 y (y = y + x)。注意:如果它们在循环中,定义清晰的路径可能从一个顶点到一个“较早”的顶点。语句3和语句1之间存在依赖关系,语句3和语句2之间也存在依赖关系。
原创
发布博客 2023.06.01 ·
1959 阅读 ·
2 点赞 ·
0 评论 ·
6 收藏

程序切片(定义+用途)

介绍让我们假设我们测试了一个程序 p 并失败了(错误的输出)。然后我们想找出导致失败(故障)的原因。现在假设我们要更改程序的一部分。我们可能会问:程序的哪些其他部分受到影响我们想找到导致失败的原因(什么是错误)?我们想确定程序的哪些部分可以是受变化影响?这两个问题都与依赖有关。它是一类程序简化技术。我们将看到几个品种。在每个我们有:我们必须保留程序行为(语义)的某些元素。一些我们可以简化程序的方法。调试:一种策略Tactic。
原创
发布博客 2023.06.01 ·
1720 阅读 ·
2 点赞 ·
0 评论 ·
2 收藏

回归测试:优先级(Coverage 的适应度函数)

在确定优先级时,我们的目标是为测试用例找到一个好的顺序。理想情况下,我们希望尽早发生任何故障。这可以加快整体开发过程,例如:有时,一旦发现失败,我们就会停止测试。即使我们计划执行所有测试用例,我们越早发现失败,我们就可以越早开始尝试修复代码。问题:我们事先不知道哪些测试用例会导致失败。因此,我们无法在测试前知道“最佳”顺序。相反,我们使用相关的指标和历史信息有缺陷:我们优先考虑被认为更有可能导致失败的测试。我们还致力于快速扩大覆盖范围。
原创
发布博客 2023.06.01 ·
592 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏
加载更多