Numpy(上)一

本文介绍了Numpy中的常量,如nan和inf,以及数据类型的创建。详细讲解了时间日期类型datetime64,包括与datetime.datetime的转换,以及datetime64和timedelta64的运算。还探讨了numpy.datetime64在工作日计算中的应用,如numpy.is_busday()和numpy.busday_count()的功能。
摘要由CSDN通过智能技术生成

一、常量

numpy.nan

  • nan, NaN, NAN都表示空值
  • 两个numpy.nan不相等
import numpy as np
print(np.nan==np.nan) #False
print(np.nan != np.nan) #True
  • numpy.isnan()返回布尔类型,判断值是否为nan
import numpy as np
x = np.array([1, 1, 8, np.nan, 10])
print(x)
# [ 1. 1. 8. nan 10.]
y = np.isnan(x)
print(y)
# [False False False True False]
z = np.count_nonzero(y)
print(z) # 1
a = np.nan
print(np.isnan(a))#True

numpy.inf

  • Inf = inf = infty = Infinity = PINF 表示无穷大
  • numpy.pi 表示圆周率
  • numpy.e 表示自然常数

二、数据类型

numpy有些数据类型和python原生数据类型相同,为了加以区分 numpy 在这些类型名称末尾都加了“_”
在这里插入图片描述

创建数据类型

numpy数值类型实际是dtype对象的实例。

class dtype(object):
	def __init__(self, obj, align=False, copy=False):
		pass

在这里插入图片描述

import numpy as np

a = np.dtype('b1')
print(a.type)
print(a.itemsize)

a = np.dtype('i2')
print(a.type)

a = np.dtype('f4')
b = np.dtype('f')
print(a.type==b.type)

a = np.dtype('c')
print(a.type)
<class 'numpy.bool_'>
1
<class 'numpy.int16'>
True
<class 'numpy.bytes_'>

三、时间日期和时间增量

时间日期类型:datetime64
在这里插入图片描述

  • 字符串转datetime64:(连接符必须是-)
import numpy as np
a = np.datetime64('2020-03-01')
print(a, a.dtype) # 2020-03-01 datetime64[D]
a = np.datetime64('2020-03')
print(a, a.dtype) # 2020-03 datetime64[M]
a = np.datetime64('2020-03-08 20:00:05')
print(a, a.dtype) # 2020-03-08T20:00:05 datetime64[s]
a = np.datetime64('2020-03-08 20:00')
print(a, a.dtype) # 2020-03-08T20:00 datetime64[m]
a = np.datetime64('2020-03-08 20')
print(a, a.dtype) # 2020-03-08T20 datetime64[h]

2019-03 和 2019-03-01 所表示的其实是同一个时间:

print(np.datetime64('2020-03') == np.datetime64('2020-03-01')) # True
print(np.datetime64('2020-03') == np.datetime64('2020-03-02')) #False
  • 从字符串创建 datetime64 数组时,如果单位不统一,则一律转化成其中最小的单位。
import numpy as np
a = np.array(['2020-03', '2020-03-08', '2020-03-08 20:00'], dtype='datetime64')
print(a, a.dtype)
# ['2020-03-01T00:00' '2020-03-08T00:00' '2020-03-08T20:00'] datetime64[m]
  • 使用arange() 创建 datetime64 数组,用于生成日期范围。
import numpy as np
a = np.arange('2020-08-01', '2020-08-10', dtype=np.datetime64)
print(a)
# ['2020-08-01' '2020-08-02' '2020-08-03' '2020-08-04' '2020-08-05'
# '2020-08-06' '2020-08-07' '2020-08-08' '2020-08-09']
print(a.dtype) # datetime64[D]
a = np.arange('2020-08-01 20:00', '2020-08-10', dtype=np.datetime64)
print(a)
# ['2020-08-01T20:00' '2020-08-01T20:01' '2020-08-01T20:02' ...
# '2020-08-09T23:57' '2020-08-09T23:58' '2020-08-09T23:59']
print(a.dtype) # datetime64[m]
a = np.arange('2020-05', '2020-12', dtype=np.datetime64)
print(a)
# ['2020-05' '2020-06' '2020-07' '2020-08' '2020-09' '2020-10' '2020-11']
print(a.dtype) # datetime64[M]

datetime64和timedelta64运算

  • timedelta64 表示两个 datetime64 之间的差。timedelta64 也是带单位的,并且和相减运算中的两个 datetime64 中的较小的单位保持一致。
import numpy as np
a = np.datetime64('2020-03-08') - np.datetime64('2020-03-07')
b = np.datetime64('2020-03-08') - np.datetime64('202-03-07 08:00')
c = np.datetime64('2020-03-08') - np.datetime64('2020-03-07 23:00', 'D')
print(a, a.dtype) # 1 days timedelta64[D]
print(b, b.dtype) # 956178240 minutes timedelta64[m]
print(c, c.dtype) # 1 days timedelta64[D]
a = np.datetime64('2020-03') + np.timedelta64(20, 'D')
b = np.datetime64('2020-06-15 00:00') + np.timedelta64(12, 'h')
print(a, a.dtype) # 2020-03-21 datetime64[D]
print(b, b.dtype) # 2020-06-15T12:00 datetime64[m]
  • 生成 timedelta64时,要注意年(‘Y’)和月(‘M’)这两个单位无法和其它单位进行运算(一年有几天?一个月有几个小时?这些都是不确定的)。
numpy.datetime64 与 datetime.datetime 相互转换
import numpy as np
import datetime
dt = datetime.datetime(year=2020, month=6, day=1, hour=20, minute=5, second=30)
dt64 = np.datetime64(dt, 's')
print(dt64, dt64.dtype)
# 2020-06-01T20:05:30 datetime64[s]
dt2 = dt64.astype(datetime.datetime)
print(dt2, type(dt2))
# 2020-06-01 20:05:30 <class 'datetime.datetime'>

datetime64的应用

将指定的偏移量应用于工作日,单位天(‘D’)。计算下一个工作日,如果当前日期为非工作日,默认报错。可以指定 forward 或 backward 规则来避免报错。(一个是向前取第一个有效的工作日,一个是向后取第一个有效的工作日),可以指定偏移量为 0 来获取当前日期向前或向后最近的工作日,当然,如果当前日期本身就是工作日,则直接返回当前日期。

import numpy as np
# 2020-07-10 星期五
a = np.busday_offset('2020-07-10', offsets=3)
print(a) # 2020-07-15
a = np.busday_offset('2020-07-11', offsets=2)
print(a)
# ValueError: Non-business day date in busday_offset
a = np.busday_offset('2020-07-10', offsets=2, roll='forward')
print(a) # 2020-07-14
a = np.busday_offset('2020-07-11', offsets=0, roll='forward')
b = np.busday_offset('2020-07-11', offsets=0, roll='backward')
print(a) # 2020-07-13
print(b) # 2020-07-10
a = np.busday_offset('2020-07-11', offsets=1, roll='forward')
b = np.busday_offset('2020-07-11', offsets=1, roll='backward')
print(a) # 2020-07-14
print(b)

numpy.is_busday() 返回指定日期是否是工作日。

import numpy as np
# 2020-07-10 星期五
a = np.is_busday('2020-07-10')
b = np.is_busday('2020-07-11')
print(a) # True
print(b) # False
  • 统计一个 datetime64[D] 数组中的工作日天数。
import numpy as np
# 2020-07-10 星期五
begindates = np.datetime64('2020-07-10')
enddates = np.datetime64('2020-07-20')
a = np.arange(begindates, enddates, dtype='datetime64')
b = np.count_nonzero(np.is_busday(a))
print(a)
# ['2020-07-10' '2020-07-11' '2020-07-12' '2020-07-13' '2020-07-14'
# '2020-07-15' '2020-07-16' '2020-07-17' '2020-07-18' '2020-07-19']
print(b) # 6
  • 自定义周掩码值,即指定一周中哪些星期是工作日。
import numpy as np
# 2020-07-10 星期五
a = np.is_busday('2020-07-10', weekmask=[1, 1, 1, 1, 1, 0, 0])
b = np.is_busday('2020-07-10', weekmask=[1, 1, 1, 1, 0, 0, 1])
print(a) # True
print(b) # False

numpy.busday_count() 返回两个日期之间的工作日数量。

import numpy as np
# 2020-07-10 星期五
begindates = np.datetime64('2020-07-10')
enddates = np.datetime64('2020-07-20')
a = np.busday_count(begindates, enddates)
b = np.busday_count(enddates, begindates)
print(a) # 6
print(b) # -6
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值