关于数据结构里big-O的一些规则记录

对于p>1有如下关系: 


  O(1) < O(logN) < O(N) < O(NlogN) < O(N的p次方) < O(p的N次方) < O(N!) < O(N的N次方) 

 

这个划分是有理论根据的。P/NP(NP-hard,NP-complete)问题就是以次为基础划分的吧[当然也有部分按并行计算划分]  

所以N的2次方3次方有时候可以看成是一个数量级,有时候却不行。因为他们的比值不是常数,但是logN不同:不同底数的logN的比值是一个与问题的规模N无关的常数。



big-O记号是对某个算法计算使用成本的悲观估计,具体规则是:

T(n)=O(f(n)) iff   倒E C>0,当n>>2时,有T(n)<C*f(n)

      它有几条常用的规则,分别是:


常数系可以忽略:O(C*f(n))=O(f(n))

低次项可以忽略:O(n^a+n^b)=O(n^a),a>b>0


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值