排序算法
排序也称排序算法,排序是将一组数据依指定的顺序进行排列的过程
稳定排序
待排序的记录序列中可能存在两个或两个以上关键字相等的记录。排序前的序列中Ri领先于Rj(即i<j).若在排序后的序列中Ri仍然领先于Rj,则称所用的方法是稳定的。比如int数组[1,1,1,6,4]中a[0],a[1],a[2]的值相等,在排序时不改变其序列,则称所用的方法是稳定的。
eg:归并、插入、冒泡、计数、基数排序
不稳定排序:快速、希尔、简单选择、堆排序
排序的分类
①内部排序:
指将需要处理的所有数据都加载到内部存储器中进行排序
②外部排序:
数据量过大,无法全部加载到内存中,需要借助外部存储进行排序
③常见的排序算法分类
算法的时间复杂度
度量一个程序(算法)执行时间的两种方法
①事后统计的方法
这种方法可行 但又两个问题 1.要想对设计的算法的运行性能进行评测 需要实际
运行该程序;2.所得时间的统计量依赖于计算机的硬件、软件等环境因素 这种方式,要在
同一台计算机的相同状态下运行 才能比较哪个算法速度更快
②事前估算的方法
通过分析某个算法的时间复杂度来判断哪个算法更优
时间频度
一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费
时间就多.一个算法中的语句执行次数成为语句频度或时间频度.记为:T(n)
时间复杂度
①一般情况下 算法中的基本操作语句的重复执行次数是问题规模n的某个函数 用T(n)表示,若
有某个辅助函数f(n) 使得当n趋近于无穷大时 T(n)/f(n) 的极限值为不等于0的常数 则称f(n)是T(n)
的同数量级函数 记作T(n)=O(f(n)),称O(f(n))位算法的渐进时间复杂度 简称时间复杂度
②T(n)不同 但是时间复杂度可能相同 如:T(n)=n²+7n+6与T(n)=3n²+2n+2 它们的T(n)不同
但时间复杂度相同 都是O(n²)
③计算时间复杂度的方法
·用常数1代替运行时间中的所有加法常数 T(n)=n²+7n+6->T(n)=n²+7n+1
·修改后的运行次数函数中 只保留最高阶项 T(n)=n²+7n+1->T(n)=1n²
·去除最高阶项的系数 T(n)=1n²->T(n)=n²->O(n²)
①常数阶 O(1)
无论代码执行了多少行 只要是没有循环等复杂结构 那这个代码的时间复杂度就是O(1)
上述代码执行的时候 它消耗的时间并不随着某个变量的增长而增长 那么无论这类代码有多长 即使有几十万几百万行 都可以用O(1)来表示它的时间复杂度
②对数阶 O(log2n)
在while循环里面 每次都将i*2 乘完之后 i距离n就越来越近了 假设循环x次后 i就大于n了 此时这个循环就退出了 也就是说2的x次方等于n 那么x=log2n 也就是说当循环了log2n次以后 这个代码就结束了 因此这个代码的时间复杂度为O(log2n) O(log2n)这个2时间上是根据代码变化的
i=i*3 则是O(log3n)
③线性阶 O(n)
这段代码 for循环里面的代码会执行n遍 因此它消耗的时间是随着n的变化而变化的 因此这类代码都可以用O(n)来表示它的时间复杂度
④线性对数阶 O(nlogN)
线性对数阶O(nlogN)其实非常容易理解 将时间复杂度为O(logN)的代码循环N遍的话 那么它的时间复杂度就是n*O(logN) 也就是O(nlogN) 上图就是O(nlog2N)
⑤平方阶O(n²)
如果把O(n)的代码再嵌套循环一遍 它的时间复杂度就是O(n²) 这段代码其实就是嵌套了两侧n循环 它的时间复杂度就是O(n*n) 即 O(n²) 如果将其中一层循环的n变成m 那它的时间复杂度就是O(n*m)
⑥立方阶(O(n³))、K次方阶(O(n^k))
参考平方阶去理解 O(n³)相当于3层 n循环 ...
平均时间复杂度和最坏时间复杂度
算法的空间复杂度
1 )类似于时间复杂度的讨论,一个算法的空间复杂度 定义为该算法所耗费的存储空间,它也是问题规模 n 的函数。
2 ) 空间复杂度 是对一个算法在运行过程中临时占用存储空间大小的量度。有的算法需要占用的临时工作单元数与解决问题的规模 n 有关,它随着 n 的增大而增大,当 n 较大时,将占用较多的存储单元,例如快速排序和归并排序算法就属于这种情况
3 )在做算法分析时,主要讨论的是时间复杂度。从用户使用体验上看,更看重的是程序执行的速度。一些缓存产品(redis)和算法(基数排序)本质就是用空间换时间.
冒泡排序
冒泡排序( Bubble Sorting )的基本思想是:通过对待排序序列从前向后(从下标较小的元素开始),依次比较相邻元素的值,若发现逆序则交换,使值较大的元素逐渐从前移向后部,就象水底下的气泡一样逐渐向上冒。
因为排序的过程中,各元素不断接近自己的位置,如果一趟比较下来没有进行过交换,就说明序列有序,因此要在排序过程中设置一个标志 flag 判断元素是否进行过交换。从而减少不必要的比较。(这个优化后面再进行)
eg:3 9 -1 10 20 使用冒泡排序将其排成一个从小到大的有序数列
第一趟排序:3 9 -1 10 20 -> 3 -1 9 10 20 -> 3 -1 9 10 20 -> 3 -1 9 10 20
第二趟排序:3 -1 9 10 20 -> -1 3 9 10 20 -> -1 3 9 10 20
第三趟排序:-1 3 9 10 20 -> -1 3 9 10 20
第四趟排序: -1 3 9 10 20
tips:
①一共要进行数组的大小-1次循环
②每一趟排序的次数在逐渐的减少
③每次找出一个最大的
④如果我们发现在某次排序中 没有发生一次交换 可以提前结束冒泡排序
这个就是优化
代码:
时间复杂度为O(n²)
public class BubbleSort {
public static void main(String[] args) {
int arr[] = {3,9,-1,10,-2};
int temp=0;
for (int i = 0; i<arr.length-1;i++){
for(int j = 0; j<arr.length-1-i;j++){
if(arr[j]>arr[j+1]){
temp=arr[j];
arr[j]=arr[j+1];
arr[j+1]=temp;
}
}
}
System.out.println(Arrays.toString(arr));
}
}
代码优化:
boolean flag = false;//表示此趟排序中是否进行过交换
package sort;
import java.util.Arrays;
public class BubbleSort {
public static void main(String[] args) {
boolean flag = false;//表示此趟排序中是否进行过交换
int arr[] = {1,2,3,4};
int temp=0;
for (int i = 0; i<arr.length-1;i++){
for(int j = 0; j<arr.length-1-i;j++){
if(arr[j]>arr[j+1]){
flag = true;
temp=arr[j];
arr[j]=arr[j+1];
arr[j+1]=temp;
}
}
System.out.println(i+1 + Arrays.toString(arr));
if(!flag){//表示此趟排序中没有进行过交换
break;
}else {
flag=false;//重置flag 进行下次判断
}
}
}
}
选择排序
选择排序也属于内部排序算法 是从欲排序的数据中 按指定的规则选出某一元素 再依规定交换
位置后 达到排序的目的
选择排序思想
选择排序( select sorting )也是一种简单的排序方法。它的基本思想是:第一次从 arr[0] 、 arr[n-1]中选取最小值,与 arr[0]交换,第二次从 arr[1]、 arr[n-1]中选取最小值,与 arr[1]交换,第三次从 arr[2]~ arr[n-1中选取最小值,与 arr[2]交换, 第 i 次从arr[i-1]~ arr[n-1]中选取最小值,与arr[i-1]交换,第n-1次从arr[n-2]~ arr[n-1]中选取最小值,与arr[n-2]交换,总共通过n-1次,得到一个按排序码从小到大排列的有序序列。
eg:8 3 2 1 7 4 6 5 使用选择排序将其排成一个从小到大的有序数列
第一趟排序: 1 3 2 8 7 4 6 5
第二趟排序: 1 2 3 8 7 4 6 5
第三趟排序: 1 2 3 8 7 4 6 5
第四趟排序: 1 2 3 4 7 8 6 5
第五趟排序: 1 2 3 4 5 8 6 7
第六趟排序: 1 2 3 4 5 6 8 7
第七趟排序: 1 2 3 4 5 6 7 8
tips:
①选择排序一共有arr.length()-1趟排序
②每一轮排序 又是一个循环 循环的规则见代码
·先假设当前这个数是最小数
·然后和后面的每个数进行比较 如果发现有比当前数更小的数 就重新
确定最小数 并得到下标
·当遍历到数组的最后时 就得到本轮的最小数和下标
·交换 见代码
代码:
package sort;
import java.util.Arrays;
public class SelectSort {
public static void main(String[] args) {
int []arr = {3,0,2,9,8};
for (int i = 0; i <arr.length-1 ; i++) {
int minV=i;
for (int j = i+1; j < arr.length; j++) {
if(arr[j]<arr[minV ]){
minV = j;
}
}
if(minV!=i){
int t = arr[i];
arr[i] = arr[minV];
arr[minV] = t;
}
}
System.out.println(Arrays.toString(arr));
}
}
插入排序
插入式排序属于内部排序法 是对于欲排序的元素以插入的方式寻找该元素的适当位置 以此达到排序的目的
插入排序的算法思想
插入排序的基本思想是:把n个待排序的元素看成为一个有序表和一个无序表 开始时有序表只包含一个元素 无序表中包含有n-1个元素 排序过程中 每次从无需表取出第一个元素 把它的排序码依次与有序表元素的排序码进行比较 将它出入到有序表中的适当位置 使之成为新的有序表
eg:(17) 3 25 14 20 9 使用选择排序将其排成一个从小到大的有序数列
第一趟插入: (3 17) 25 14 20 9
第二趟插入: (3 17 25) 14 20 9
第三趟插入: (3 14 17 25) 20 9
第四趟插入: (3 14 17 20 25) 9
第五趟插入: (3 9 14 17 20 25)
代码:
package sort;
import java.util.Arrays;
public class InsertSort {
public static void main(String[] args) {
int []arr = {3,25,14,20,9};
for (int i = 1; i < arr.length; i++) {
int insertValue = arr[i];
int index = i-1;
while (index>=0&&arr[index]>insertValue){
arr[index+1]=arr[index];
index--;
}
arr[index+1]=insertValue;
}
System.out.println(Arrays.toString(arr));
}
}
希尔排序
简单插入排序存在的问题
结论:当需要插入的数是较小的数时 后移的次数明显增多 对效率有影响
希尔排序法的介绍
希尔排序也是一种插入排序 它是简单插入排序经过改进之后的一个更高效的版本 也称为
缩小增量排序
希尔排序法基本思想
希尔排序是记录按下标的一定增量分组 对每组使用直接插入排序算法排序 随着增量逐渐
减少 每组包含的关键词越来越多 当增量缩减至1时 整个数组恰被分成一组 算法便终止
eg:8 9 1 7 2 3 5 4 6 0 使用希尔排序将其排成一个从小到大的有序数列
初始增量gap=length/2=5 意味着整个数组被分为5组 [8,3] [9,5] [1,4] [7,6] [2,0]
3 5 1 6 0 8 9 4 7 2
对这5组分别进行插入排序 结果如下 可以看到 像3 5 6 这些小元素都被调到前面了 然后缩小
增量 gap=5/2=2 数组被分为2组 [3,1,0,9,7] [5,6,8,4,2]
3 5 1 6 0 8 9 4 7 2
对以上2组再分别进行直接插入排序 结果如下 可以看到 此时整个数组的有序程度 更近一步
再缩小增量gap=2/2=1 此时 整个数组为1组 [0,2,1,4,3,5,7,6,9,8]
代码1:希尔排序时 对有序序列插入时采用交换法
package sort;
import java.util.Arrays;
public class ShellSort1 {
public static void main(String[] args) {
int []arr = {8,9,1,7,2,3,5,4,6,0};
for (int gap = arr.length/2; gap >0 ; gap/=2) {
for(int i=gap;i<arr.length;i++){
/*
i=gap 即分为了 几组 i<len 即表明 几组一共要进行几次比较
比如2组 [3,1,0,9,7] [5,6,8,4,2] i=2 2<10 即 2 3 4 5 6 7 8 9 8次
3 5 1 6 0 8 9 4 7 2
那么共要进行3,1 1,0 0,9 9,7
5,6 6,8 8,4 4,2
八次大的对比每一次又可以细分 比如
第一组的0 要先和9 对比
然后gap-2之后就是1和0对比 然后在gap-2 就是3和0 对比 再gap-2 退出循环
*/
for (int j = i-gap; j >=0 ; j-=gap) {/*
这个循环是为了确保每次的元素都能和 组内其相邻的后一个元素 和前面所有元素对比 比如
gap=5/2=2 数组被分为2组[3,1,0,9,7] [5,6,8,4,2] 第一组的0 要先和9 对比
然后gap-2之后就是1和0对比 然后在gap-2 就是3和0 对比 再gap-2 退出循环
*/
if(arr[j]>arr[j+gap]){
int t = arr[j];
arr[j]=arr[j+gap];
arr[j+gap]=t;
}
}
}
}
System.out.println(Arrays.toString(arr));
}
}
代码2:希尔排序时 对有序序列插入时采用移动法
package sort;
import java.util.Arrays;
public class ShellSort2 {
public static void main(String[] args) {
int []arr = {8,9,1,7,2,3,5,4,6,0};
for (int gap = arr.length/2; gap >0 ; gap/=2) {
//从第gap个元素 逐个对其所在的组进行直接插入排序
for(int i = gap;i<arr.length;i++){
int j =i;
int temp = arr[j];
if(arr[j]<arr[j-gap]){
while (j-gap>=0&&temp<arr[j-gap]){
arr[j] = arr[j-gap];
j -= gap;
}
arr[j]=temp;
}
}
}
System.out.println(Arrays.toString(arr));
}
}
或者
package sort;
import org.junit.Test;
import java.util.Arrays;
public class exer {
@Test
public void test2(){
int []arr = {8,9,1,7,2,3,5,4,6,0,22,-2,0,0,0,4,3,-2,9};
for (int gap = arr.length/2; gap >0; gap/=2) {
for (int i = gap; i < arr.length; i++) {
int index = i-gap;
int value = arr[i];
while(index>=0&&arr[index]>value){
arr[index+gap] = arr[index];
index-=gap;
}
arr[index+gap] = value;
}
}
System.out.println(Arrays.toString(arr));
}
}
快速排序法的介绍
快速排序是对冒泡排序的一种改进.基本思想是:通过一趟排序将要排序的数据分割成独立的两部分 其中一部分的所有数据都比另外一部分的所有数据要小 然后再按此方法对这两部分数据分别进行快速排序 整个排序过程可以递归进行 以此达到整个数据变成有序序列
快速排序法示意图
代码:
package sort;
import java.util.Arrays;
public class QuickSort {
public static void main(String[] args) {
int []arr = {8,9,1,7,0,3,2,4,6,0};
quickSort(arr,0,9);
System.out.println(Arrays.toString(arr));
}
public static void quickSort(int []arr,int left,int right){
int l = left;//左下标
int r = right;//右下标
int pivot = arr[(l+r)/2];//中轴值
int temp;
//while的目的是 比pivot值小的放到左边 比pivot值大的放到右边
while (l<r){
//在pivot的左边一直找 找到大于等于pivot值 才退出
while (arr[l]<pivot){
l+=1;
}
//在pivot的右边一直找 找到小于等于pivot值 才退出
while (arr[r]>pivot){
r-=1;
}
//l>=r 说明pivot左右两侧的值 已经全部是 左边<=p
//右边>=p
if(l>=r){
break;
}
temp = arr[l];
arr[l] = arr[r];
arr[r] = temp;
//若交换之后 发现这个arr[l] == pivot值, 就r--
/*
因为有可能交换之后还是相同的值 比如 {8,9,1,7,0,3,2,4,6,0}
第一次pivot=0 第一次交换后{0,9,1,7,0,3,2,4,6,8}
两个0进行无限制的交换
进入死循环
*/
if(arr[l]==pivot){
r-=1;
}
//若交换之后 发现这个arr[r] == pivot值, 就l++
if(arr[r]==pivot){
l+=1;
}
}
if(l==r){
l+=1;
r-=1;
}
//向左递归
if (left<r)//限制递归条件 不然会栈溢出
quickSort(arr,left,r);
//右
if(right>l)
quickSort(arr,l,right);
}
}
归并排序
归并排序 是利用归并的思想实现的排序方法 该算法采用经典的分治策略
分治法:将问题分成一些小的问题 然后 递归求解 而治的阶段则将分的阶段得到的各
答案“修补”在一起
代码:
package sort;
import java.util.Arrays;
public class MergerSort {
public static void main(String[] args) {
int []arr = {8,4,5,7,1,3,6,2};
int []temp = new int[arr.length];
mergeSort(arr,0,arr.length-1,temp);
System.out.println(Arrays.toString(arr));
}
//分+合
public static void mergeSort(int[]arr,int left,int right,int[] temp){
if(left<right){
int mid = (left+right)/2;
//向左递归进行分解
mergeSort(arr, left, mid, temp);
//向右递归进行分解
mergeSort(arr, mid+1, right, temp);
//最后分解的 最先合并
merge(arr,left,mid,right,temp);
}
}
//合并
public static void merge(int[]arr,int left,int mid,int right,int[] temp){
int i = left;//初始化i 左边有序序列的初始索引
int j = mid+1;//初始化j 右边有序序列的初始索引
int t = 0;//指向temp数组的当前索引
//先把左右两边(有序)的数据 按规则填充到temp数组
//直到左右两边的有序序列 有一边处理完为止
while(i<=mid&&j<=right){
//若左边的有序序列的当前元素 小于右边有序序列的当前元素
//即将左边的当前元素 拷贝到temp数组
if(arr[i]<arr[j]){
temp[t]=arr[i];
i+=1;
}else {
temp[t]=arr[j];
j+=1;
}
t++;
}
//把有剩余数据的一边的数据 依次全部填充到temp
while(i<=mid){//说明左边的有序序列有剩余 就全部填充到temp
temp[t] = arr[i];
t+=1;
i+=1;
}
while(j<=right){//说明左边的有序序列有剩余 就全部填充到temp
temp[t] = arr[j];
t+=1;
j+=1;
}
//将temp数组的元素拷贝到arr
//并不是每次都拷贝所有
t=0;
int tempLeft = left;
//第一次合并templeft=0 right=1 8和4合并成48
//第二次 1 2 5和7合并成57
//2 3 1和3 13
//0 3 2和6 26
//......
//最后一次 0 7 4578和1236 合并为12345678
while (tempLeft<=right){
arr[tempLeft] = temp[t];
t+=1;
tempLeft+=1;
}
}
}
基数排序
1)基数排序 属于"分配式排序" 又称"桶子法(bin sort)" 顾名思义 它是通过键值的各个位的值
将要排序的元素分配至某些"桶"中 达到排序的作用
2)基数排序法是属于稳定的排序 基数排序法是高效稳定排序法
3)基数排序是桶排序的扩展
4)将整数位按位数切割成不同的数字 然后按每个位数分别比较
基数排序基本思想
将所有待比较数值统一为同样的数位长度 数位较短的数 前面补0 然后从最低位开始
依次进行一次排序 这样从最低位排序一直到最高位排序完成后 数列就变成一个有序数列
代码:
package sort;
import java.util.Arrays;
public class RadixSort {
public static void main(String[] args) {
int [] arr = {53, 3, 542, 748, 14, 214};
radixSort(arr);
System.out.println(Arrays.toString(arr));
}
public static void radixSort(int []arr){
int max = arr[0];
for (int index = 0; index < arr.length; index++) {
if(arr[index]>max){
max=arr[index];
}
}
//得到最大的数 是几位数
int maxLen = (max+"").length();
//定义一个二维数组 表示10个桶 每个桶都是一个一唯数组
int [][]bucket = new int[10][arr.length];
//为了记录每个桶中 实际存放了多少个数据 我们定义一个一位数组来记录
//各个桶的每次放入的数据的个数
int []bucketElementCounts = new int[10];
for (int is = 0,n=1; is < maxLen; is++,n*=10) {
for (int i = 0; i < arr.length; i++) {
int digitOfElement = arr[i]/n%10;
//[digitOfElement] 表示放入几号桶 [bucketElementCounts[digitOfElement]]表示这个桶中的第几个元素
bucket[digitOfElement][bucketElementCounts[digitOfElement]]=arr[i];
bucketElementCounts[digitOfElement]++;
}
//按照这个桶的书序(一唯数组的下标 依次取出数据 放入原来数组)
int index = 0;
for (int j = 0; j < bucketElementCounts.length; j++) {
//如果桶中有数据 我们才将其中的数据放入原数组
if(bucketElementCounts[j]!=0){
//循环该桶 即第k个桶(第k个一位数组) 放入
for (int k = 0; k < bucketElementCounts[j]; k++) {
arr[index++] = bucket[j][k];
}
}
bucketElementCounts[j]=0;
}
}
}
}
堆排序
①堆排序是利用堆这种数据结构而设计的一种排序算法,堆排序是一种选择排序,它的最坏,最好,平均时间复杂度均为O(nlogn),它也是不稳定排序。
②堆是具有以下性质的完全二叉树:每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆, 注意 : 没有要求结点的左孩子的值和右孩子的值的大小关系。
③每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆
④一般升序采用大顶堆,降序采用小顶堆
大顶堆举例说明
我们对堆中的结点按层进行编号,映射到数组中就是下面这个样子:
大顶堆特点:arr[i] >= arr[2*i+1] && arr[i] >= arr[2*i+2] // i 对应第几个节点,i从0开始编号
小顶堆举例说明
小顶堆特点:arr[i] <= arr[2*i+1] && arr[i] <= arr[2*i+2] // i 对应第几个节点,i从0开始编号
堆排序的基本思想
①将待排序序列构造成一个大顶堆
②此时,整个序列的最大值就是堆顶的根节点。
③将其与末尾元素进行交换,此时末尾就为最大值。
④然后将剩余n-1个元素重新构造成一个堆,这样会得到n个元素的次小值。如此反复执行,便能得到一个有序序列了。
可以看到在构建大顶堆的过程中,元素的个数逐渐减少,最后就得到一个有序序列了.
eg:数组 {4,6,8,5,9} , 要求使用堆排序法,将数组升序排序
从最后一个非叶子结点(第一个非叶子结点 arr.length/2-1=5/2-1=1 也就是6),从下至上调整
找到第二个非叶子结点4 由于[4,9,8]中9元素最大 4和9交换
这时 交换导致了子根[4,5,6]结构混乱 继续调整 [4,5,6]中6最大 交换4和6
将堆顶元素与末尾元素进行交换 使末尾元素最大 然后继续调整堆 再将堆顶元素与末尾元素交换 得到第二大元素 如此反复进行交换 重建 交换
①将堆顶元素和末尾元素4进行交换
②继续调整结构 使其满足定义
③后序过程 继续进行调整 交换 如此反复 最终使得整个序列有序
总结:
①将无序序列构建成一个堆 根据升序降序需求选择大顶堆或小顶堆
②将堆顶元素与末尾元素交换 将最大元素"沉"到数组末端
③重新调整结构 使其满足定义 然后继续交换堆顶元素与当前末尾元素 反复执行调整
+交换步骤 直到整个序列有序
代码:
堆排序中 代码上其实并不体现二叉树 而是直接对数组进行操作
import java.util.Arrays;
public class HeapSort {
public static void main(String[] args) {
//按要求将数组进行升序排列(升序 用大顶堆)
int []arr = {4,6,8,5,9};
heapSort(arr);
}
//堆排序
public static void heapSort(int[]arr){
int temp=0;
for (int i = arr.length/2-1; i>=0 ; i--) {
adjustHeap(arr,i,arr.length);
}
for (int j = arr.length-1; j >0 ; j--) {
//交换
temp= arr[j];
arr[j]=arr[0];
arr[0]=temp;
adjustHeap(arr,0,j);
}
System.out.println(Arrays.toString(arr));
}
//将一个数组(二叉树)调整成大顶堆
/**
*功能:将非叶子结点i对应的数组(二叉树)调整成大顶堆
* eg:第一个非叶子结点是6 即{4,6,8,5,9}=>{4,9,8,5,6}
* @param arr 待调整的数组
* @param i 表示非叶子结点在数组中的索引
* @param length 表示对多少个元素进行调整 第一次就是当前数组的length() length逐渐减少
*/
public static void adjustHeap(int []arr,int i,int length){
int temp = arr[i];//非叶子结点
//开始调整 i*2+1 左子节点 i*2+2 右子节点
for (int k = i*2+1; k <length ; k=i*2+1) {
if(k+1<length && arr[k]<arr[k+1]){//说明左子节点的值小于右子节点的值
//k = i*2+1 k+1=i*2+2
k++;//k指向右子节点
}
if(arr[k]>temp){//若子节点大于父节点
arr[i] = arr[k];
i=k;//i指向k 继续循环比较
}else {
break;//
}
}
arr[i] = temp;//将temp值放到调整后的位置
}
}
常用的排序算法比较