【图像修复】基于matlab全变分TV+curvelet变换彩色图像修复【含Matlab源码 461期】

💥💥💥💥💥💥💞💞💞💞💞💞💞💞欢迎来到海神之光博客之家💞💞💞💞💞💞💞💞💥💥💥💥💥💥
在这里插入图片描述
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进;
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式

⛳️座右铭:行百里者,半于九十。
更多Matlab图像处理仿真内容点击👇
Matlab图像处理(进阶版)
付费专栏Matlab图像处理(初级版)

⛳️关注CSDN海神之光,更多资源等你来!!

⛄一、TV整体变分修复算法简介

TV整体变分修复算法最早由Rudin等人于1992年提出, 随后很多学者对其进行了分析和研究。Chan等人指出, 由于图像不平滑以及受噪声影响等原因, 一些模型的实际修复效果往往较差, 并在此基础上提出了图像修复应该遵循的3大原则:

  1. 待修复区域应该是局部的, 且完全由待修复区域附近的信息确定;
  2. 能够修复断裂的狭窄边缘;
  3. 对噪声具有鲁棒性。

1 TV模型算法
TV模型算法上依据上述3个原则, 通过最小化能量泛函来修复破损图像, 其原理如图1所示。
在这里插入图片描述
图1 图像修复原理图
图1中, D为待修复区域, Γ为D的边界, E为D的外邻域。假定在区域E中一点u0|E被高斯白噪声所污染, 修复后的图像函数为u, 代价函数定义为
R (u) =∫E∪Dr (|∇u|) dxdy (1)
且满足约束条件
在这里插入图片描述
式中:Area (E) 为E区域的面积;σ为高斯白噪声的标准偏差。则上述问题转化为:找到合适的函数u使得代价函数 (1) 最小。由Lagrange乘数法, 可以将代价函数 (1) 转化为
在这里插入图片描述
根据Euler-Lagrange方程求解函数u, 可以得到迭代
公式 u (n) O=∑P∈Λh (n-1) OPu (n-1) P +h (n-1) OOu (n-1) O (4)
其中, hOP (P∈Λ, Λ={N, S, W, E}, hOO, 为权值系数。

⛄二、部分源代码

clear all;close all;clc;
if 0
img = imread(‘lina.jpg’);
end
if 1
img = imread(‘butterfly.png’);
end

img = imresize(img,0.5);
img = im2double(img);
[n_row,n_col,c] = size(img);
% randomly choose missing lines (75% lost)
miss_data = repmat(rand(15,15) > 0.5,[15,15,c]); %根据实际图片大小创建匹配维度的随机噪声矩阵
miss_image = img.miss_data;
% miss_image(miss_data == 0) = 1;
% imshow(miss_image);
% some parameters
maxiter = 40;
check = 10;
lambda = 640;%自定义平滑指数
tic
% grayscale images
if c == 1
% inpainting using a TV prior
u1 = TV_inpainting_primal_dual(miss_image, miss_data, lambda, maxiter
4, check);
time1=toc
% inpainting using a Curvelet prior(fast discrete curvelet transform)
u2 = Curvelet_inpainting_primal_dual(miss_image, miss_data, lambda, maxiter, check);
time2=toc
end
%rgb images
if c == 3
u3 = rgb_TV_inpainting_primal_dual(miss_image, miss_data, lambda, maxiter*4, check);
time3=toc
u4 = rgb_Curvelet_inpainting_primal_dual(miss_image, miss_data, lambda, maxiter, check);
time4=toc
end

⛄三、运行结果

在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]何凯,张涛,梁然.一种基于全变分模型的图像修复改进算法[J].光电子.激光. 2010,21(12)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海神之光

有机会获得赠送范围1份代码

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值