💥💥💥💥💥💥💞💞💞💞💞💞💞💞欢迎来到海神之光博客之家💞💞💞💞💞💞💞💞💥💥💥💥💥💥
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进;
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。
更多Matlab图像处理仿真内容点击👇
①Matlab图像处理(进阶版)
②付费专栏Matlab图像处理(初级版)
⛳️关注CSDN海神之光,更多资源等你来!!
⛄一、简介
1 Retinex
1.1 理论
Retinex理论始于Land和McCann于20世纪60年代作出的一系列贡献,其基本思想是人感知到某点的颜色和亮度并不仅仅取决于该点进入人眼的绝对光线,还和其周围的颜色和亮度有关。Retinex这个词是由视网膜(Retina)和大脑皮层(Cortex)两个词组合构成的.Land之所以设计这个词,是为了表明他不清楚视觉系统的特性究竟取决于此两个生理结构中的哪一个,抑或是与两者都有关系。
Land的Retinex模型是建立在以下的基础之上的:
(1)真实世界是无颜色的,我们所感知的颜色是光与物质的相互作用的结果。我们见到的水是无色的,但是水膜—肥皂膜却是显现五彩缤纷,那是薄膜表面光干涉的结果;
(2)每一颜色区域由给定波长的红、绿、蓝三原色构成的;
(3)三原色决定了每个单位区域的颜色。Retinex 理论的基本内容是物体的颜色是由物体对长波(红)、中波(绿)和短波(蓝)光线的反射能力决定的,而不是由反射光强度的绝对值决定的;物体的色彩不受光照非均性的影响,具有一致性,即Retinex理论是以色感一致性(颜色恒常性)为基础的。如下图所示,观察者所看到的物体的图像S是由物体表面对入射光L反射得到的,反射率R由物体本身决定,不受入射光L变化。
Retinex理论的基本假设是原始图像S是光照图像L和反射率图像R的乘积,即可表示为下式的形式:
基于Retinex的图像增强的目的就是从原始图像S中估计出光照L,从而分解出R,消除光照不均的影响,以改善图像的视觉效果,正如人类视觉系统那样。在处理中,通常将图像转至对数域,即
从而将乘积关系转换为和的关系:
Retinex方法的核心就是估测照度L,从图像S中估测L分量,并去除L分量,得到原始反射分量R,即:
函数 f(x) 实现对照度L的估计(可以去这么理解,实际很多都是直接估计r分量)。
2 Retinex理论的理解
如果大家看论文,那么在接下去的篇幅当中,肯定会介绍两个经典的Retinex算法:基于路径的Retinex以及基于中心/环绕Retinex。在介绍两个经典的Retinex算法之前,我先来讲一点个人的理解,以便第一次接触该理论的朋友能够更快速地理解。当然,如果我的理解有问题,也请大家帮忙指出。
Retinex理论就我理解,与降噪类似,该理论的关键就是合理地假设了图像的构成。如果将观察者看到的图像看成是一幅带有乘性噪声的图像,那么入射光的分量就是一种乘性的,相对均匀,且变换缓慢的噪声。Retinex算法所做的就是合理地估计图像中各个位置的噪声,并除去它。
在极端情况下,我们大可以认为整幅图像中的分量都是均匀的,那么最简单的估计照度L的方式就是在将图像变换到对数域后对整幅图像求均值。因此,我设计了以下算法来验证自己的猜想,流程如下:
(1) 将图像变换到对数域
(2) 归一化去除加性分量
(3) 对步骤3得到的结果求指数,反变换到实数域
2 暗通道
2.1 何恺明的暗通道先验(dark channel prior)去雾算法是CV界去雾领域很有名的算法,关于该算法的论文"Single Image Haze Removal Using Dark Channel Prior"一举获得2009年CVPR最佳论文。作者统计了大量的无雾图像,发现一条规律:每一幅图像的RGB三个颜色通道中,总有一个通道的灰度值很低,几乎趋向于0。基于这个几乎可以视作是定理的先验知识,作者提出暗通道先验的去雾算法。
其暗通道的数学表达式为:
2.1 暗通道去雾原理
⛄二、部分源代码
clc
clear all;
I=imread(‘C:\Users\lenovo\Desktop\图像去雾算法代码\毕设代码\fog.jpg’);
tic
R=I(:,:,1);
G=I(:,:,2);
B=I(:,:,3);
M=histeq®;
N=histeq(G);
L=histeq(B);
In=cat(3,M,N,L);
imshow(In);
figure
imshowpair(I, In, ‘montage’);
t=toc;
[C,L]=size(I); %求图像的规格
Img_size=C*L; %图像像素点的总个数
G=256; %图像的灰度级
H_x=0;
nk=zeros(G,1);%产生一个G行1列的全零矩阵
for i=1:C
for j=1:L
Img_level=I(i,j)+1; %获取图像的灰度级
nk(Img_level)=nk(Img_level)+1; %统计每个灰度级像素的点数
end
end
clear all;
clc;
tic
%一,图像的预处理,读入彩色图像将其灰度化
PS=imread(‘C:\Users\lenovo\Desktop\图像去雾算法代码\毕设代码\fog.jpg’); %读入BMP彩色图像文件
imshow(PS) %显示出来
title(‘输入的图像’)
%imwrite(rgb2gray(PS),‘PicSampleGray.bmp’); %将彩色图片灰度化并保存
R=PS(:,:,1); %灰度化后的数据存入数组
%二,绘制直方图
[m,n]=size®; %测量图像尺寸参数
GP=zeros(1,256); %预创建存放灰度出现概率的向量
for k=0:255
GP(k+1)=length(find(Rk))/(mn); %计算每级灰度出现的概率,将其存入GP中相应位置
end
figure,
bar(0:255,GP,‘g’) %绘制直方图
title(‘雾天图像的直方图’)
xlabel(‘灰度值’)
ylabel(‘出现概率’)
%三,直方图均衡化
S1=zeros(1,256);
for i=1:256
for j=1:i
S1(i)=GP(j)+S1(i); %计算Sk
end
end
S2=round((S1256)+0.5); %将Sk归到相近级的灰度
for i=1:256
GPeq(i)=sum(GP(find(S2i))); %计算现有每个灰度级出现的概率
end
figure,bar(0:255,GPeq,‘b’) %显示均衡化后的直方图
title(‘均衡化后的直方图’)
xlabel(‘灰度值’)
ylabel(‘出现概率’)
%四,图像均衡化
PA=R;
for i=0:255
PA(find(R==i))=S2(i+1); %将各个像素归一化后的灰度值赋给这个像素
end
G=PS(:,:,2); %灰度化后的数据存入数组
%二,绘制直方图
[m,n]=size®; %测量图像尺寸参数
GPG=zeros(1,256); %预创建存放灰度出现概率的向量
for k=0:255
GPG(k+1)=length(find(G==k))/(m*n); %计算每级灰度出现的概率,将其存入GP中相应位置
end
%三,直方图均衡化
SG=zeros(1,256);
for i=1:256
for j=1:i
SG(i)=GPG(j)+SG(i); %计算Sk
end
end
S2G=round((SG*256)+0.5); %将Sk归到相近级的灰度
for i=1:256
GPeqG(i)=sum(GPG(find(S2G==i))); %计算现有每个灰度级出现的概率
end
%四,图像均衡化
PAG=G;
for i=0:255
PAG(find(G==i))=S2G(i+1); %将各个像素归一化后的灰度值赋给这个像素
end
%figure,imshow(PAG) %显示均衡化后的图像
%title(‘均衡化后图像’)
B=PS(:,:,3); %灰度化后的数据存入数组
%二,绘制直方图
[m,n]=size(B); %测量图像尺寸参数
GPB=zeros(1,256); %预创建存放灰度出现概率的向量
for k=0:255
GPB(k+1)=length(find(B==k))/(m*n); %计算每级灰度出现的概率,将其存入GP中相应位置
end
%三,直方图均衡化
S1B=zeros(1,256);
for i=1:256
for j=1:i
S1B(i)=GPB(j)+S1B(i); %计算Sk
end
end
S2B=round((S1B*256)+0.5); %将Sk归到相近级的灰度
for i=1:256
GPeqB(i)=sum(GPB(find(S2B==i))); %计算现有每个灰度级出现的概率
end
clear all;
tic
I = imread(‘C:\Users\lenovo\Desktop\图像去雾算法代码\毕设代码\fog.jpg’);
R = I(:, :, 1);
%imhist®;
% figure;
[N1, M1] = size®;
R0 = double®;
Rlog = log(R0+1);
Rfft2 = fft2(R0);
sigma = 200;
F = fspecial(‘gaussian’, [N1,M1], sigma);
Efft = fft2(double(F));
DR0 = Rfft2.* Efft;
DR = ifft2(DR0);
DRlog = log(DR +1);
Rr = Rlog - DRlog;
EXPRr = exp(Rr);
%imhist(EXPRr);
%figure;
MIN = min(min(EXPRr));
MAX = max(max(EXPRr));
EXPRr = (EXPRr - MIN)/(MAX - MIN)*255;
EXPRr=uint8(EXPRr);
imhist(EXPRr);
figure;
EXPRr = adapthisteq(EXPRr);
% imhist(EXPRr);
%figure;
G = I(:, :, 2);
G0 = double(G);
Glog = log(G0+1);
Gfft2 = fft2(G0);
DG0 = Gfft2.* Efft;
DG = ifft2(DG0);
DGlog = log(DG +1);
Gg = Glog - DGlog;
EXPGg = exp(Gg);
MIN = min(min(EXPGg));
MAX = max(max(EXPGg));
EXPGg = (EXPGg - MIN)/(MAX - MIN)*255;
EXPGg=uint8(EXPGg);
%imhist(EXPGg);
%figure;
⛄三、运行结果
由于多种算法运行结果较多,此处提供汇总对比:
⛄四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1] 齐卉,孙超,苏通,马俊智,朱勇杰,丁建军.基于MATLAB的图像去雾技术研究[J].江汉大学学报(自然科学版). 2020,48(06)
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合