毕设题目:Matlab疾病识别与分类

本文介绍了利用SVM和Matlab GUI开发的苜蓿植物病虫害识别系统,通过构建图像数据库提高了识别效率。文中还提供了几个相关Matlab源码示例,涉及植物叶子疾病的检测和分类,以及虫害识别。此外,提到了深度学习在植物病虫害图像识别中的应用,并引用了相关研究文献。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 案例背景
植物病虫害的识别是对植物保护和利用的基础,随着计算机图像识别技术的发展,利用计算机图像处理技术获取植物病虫害信息可以大大提高植物病虫害的识别效率。选择SVM工具箱和Matlab的图形用户界面工具箱GUI设计开发了苜蓿植物病虫害识别系统,构建了自然环境下图像数据库和特定环境图像数据库,为今后的植物病虫害图像识别技术的发展奠定了基础。

2 现成案例(代码+参考文献)
2.1【疾病分类】基于matlab SVM植物叶子疾病检测和分类【含Matlab源码 093期】

2.2【疾病识别】基于matlab GUI SVM农作物叶子虫害识别与分类【含Matlab源码 1322期】

2.3【疾病识别】基于matlab SVM农作物叶子虫害识别与分类【含Matlab源码 624期】

2.4【疾病检测】基于matlab机器视觉黑色素瘤

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海神之光

有机会获得赠送范围1份代码

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值