1 案例背景
交通标志识别技术是智能交通和自动驾驶领域中的一项关键性技术,如何建立一个准确性高、实时性好以及安全性佳的交通标志识别系统是当下一大研究热点。在简要介绍该系统框架和比较已公开的交通标志数据集的基础上,研究了交通标志识别系统的两大核心部分——标志检测和标志识别,并阐述了各自的原理机制,最后总结了实现交通标志检测和识别所存在的难点问题并对深度学习法在该系统中的后续研究提出了几点拙见。
2 数据集和预处理
2.1 数据集
本研究使用德国交通标志识别的数据集(GTSRB数据集))进行训练和模型测试,该数据集中存在43个类别的交通标志,训练数据有34799个,验证数据有4410个,测试数据有12630个,图片的大小为32×32,有3个颜色通道。测试集每个类别的图像数量存在较大差异,因此对每个类别的样本进行均衡,最终样本数量总数为50690。
2.2 预处理方法介绍
首先将输入的尺寸缩小为32×32×3的图像,交通标志并没有因为颜色不同而具有不同的含义。在训练时,忽略交通标志图像的颜色差异,而只考虑图像的不同部分的亮度差异。本文使用HSV和YUV色彩空间,并且在HSV空间取V通道,在YUV空间取Y通道。如图1所示,图1是原图经过不同预处理后的图像,图1a为HSV中的V通道图像,图1b为YUV通道