💥💥💥💥💥💥💞💞💞💞💞💞💞💞欢迎来到海神之光博客之家💞💞💞💞💞💞💞💞💥💥💥💥💥💥
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进;
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。
更多Matlab物理应用仿真内容点击👇
①Matlab物理应用 (进阶版)
②付费专栏Matlab物理应用(初级版)
⛳️关注CSDN海神之光,更多资源等你来!!
⛄一、FDTD和UPML计算电短偶极子分布
FDTD(有限差分时域法)和UPML(完全匹配层)是计算电磁学中常用的数值模拟方法,特别是用于模拟和分析电磁波与物体相互作用的问题。下面分别介绍它们计算电短偶极子分布的原理和流程。
FDTD计算电短偶极子分布原理:
1 FDTD是一种基于时间和空间离散化的数值计算方法,它通过将麦克斯韦方程组在时间和空间上离散化成差分方程进行求解。
2 在模拟过程中,电磁场被划分成网格,并在每个时间步长更新网格点上的电场和磁场分量。
3 对于电短偶极子,通常将其简化为在特定位置和时间产生初始电磁激励的点源。
4 通过引入偶极子的电流源项,可以模拟偶极子在特定时刻的辐射和传播过程。
5 FDTD通过迭代计算,逐步追踪电磁波在空间中的传播和散射,直到达到稳态或完成所需时间步数的模拟。
UPML计算电短偶极子分布原理:
1 UPML是FDTD方法中用于吸收边界条件的一种技术,目的是吸收并向外辐射的电磁波,避免它们在模拟区域边界处反射回来。
2 UPML是通过在计算域的边界附近引入特殊材料层来实现的,这种材料的电磁参数(电导率、磁导率、介电常数)是通过特定的构造函数来定义的,从而确保入射波能在该层被吸收。
3 在模拟电短偶极子分布时,UPML层被放置在计算区域的边界,用于吸收偶极子辐射的电磁波,使得模拟结果更加准确。
FDTD和UPML计算流程:
1 定义计算区域:根据问题的几何尺寸和电磁特性定义网格,并设置适当的边界条件。
2 源设置:在模拟区域内合适的位置设置电短偶极子源,通常为一个时间依赖的电流源。
3 UPML配置:在计算区域的外围设置UPML层,以吸收向外辐射的电磁波。
4 初始化场值:根据问题的需求初始化电磁场的初始值。
5 时间迭代:通过递推关系更新空间网格点上的电场和磁场分量,逐步进行时间迭代。
6 数据记录:在迭代过程中记录感兴趣的区域内的电磁场分布。
7 结果分析:对记录的数据进行分析,得到电短偶极子的电磁分布特性。
⛄二、部分源代码和运行步骤
1 部分代码
clear;clc;
%**********************************************************
pi=3.1415926;
muz=4pi1e-7;
eps0=8.8511e-12;
c=1/sqrt(muzeps0);
f=1e8;%%时谐激励源的频率
k=2pifsqrt(muzeps0);%%波数
Z=sqrt(muz/eps0);%%阻抗
wave_length=c/f;%%波长
ds=wave_length/80.0;
dt=ds/c/2.0;
TT=1.0/f/dt;%%一个周期的时间步数
%**********************************************************
NX=80;NY=80;NZ=80;AA=2;nT=5;nmax=round(TTnT); %外推边界距离吸收边界的距离为AA,时间循环为nT个周期,一般3-5个周期达到稳定
%*********************************************************
Hx=zeros(NX+1,NY,NZ);Hy=zeros(NX,NY+1,NZ);Hz=zeros(NX,NY,NZ+1);
Ex=zeros(NX,NY+1,NZ+1);Ey=zeros(NX+1,NY,NZ+1);Ez=zeros(NX+1,NY+1,NZ);
Ez_near_analytical(nmax)=0;
Ez_near_save(nmax)=0;
%**********************************************************
hx_1=zeros(NX+1,NY,NZ);hy_1=zeros(NX,NY+1,NZ);hz_1=zeros(NX,NY,NZ+1); %三个时刻的场(边界问题)
hx_2=zeros(NX+1,NY,NZ);hy_2=zeros(NX,NY+1,NZ);hz_2=zeros(NX,NY,NZ+1);
hx_3=zeros(NX+1,NY,NZ);hy_3=zeros(NX,NY+1,NZ);hz_3=zeros(NX,NY,NZ+1);
ex_1=zeros(NX,NY+1,NZ+1);ey_1=zeros(NX+1,NY,NZ+1);ez_1=zeros(NX+1,NY+1,NZ);
ex_2=zeros(NX,NY+1,NZ+1);ey_2=zeros(NX+1,NY,NZ+1);ez_2=zeros(NX+1,NY+1,NZ);
ex_3=zeros(NX,NY+1,NZ+1);ey_3=zeros(NX+1,NY,NZ+1);ez_3=zeros(NX+1,NY+1,NZ);
%**********************************************************
midx=fix(NX/2+1);midy=fix(NY/2+1);midz=fix(NZ/2+1);%%中央位置
i0=1+AA;j0=1+AA;k0=1+AA;ia=NX+1-AA;jb=NY+1-AA;kc=NZ+1-AA; %各个方向外推(输出)边界的位置
%%%%_x1,_x2分别代表x向的两个输出面;_y1,_y2分别代表y向的两个输出面;_z1,_z2分别代表z向的两个输出面
FMz_x1=0;FMy_x1=0;FMz_y1=0;FMx_y1=0;FMy_z1=0;FMx_z1=0;%%各个输出面上磁流的各个分量(沿面的切向)的复数形式
FMz_x2=0;FMy_x2=0;FMz_y2=0;FMx_y2=0;FMy_z2=0;FMx_z2=0;
FJz_x1=0;FJy_x1=0;FJz_y1=0;FJx_y1=0;FJy_z1=0;FJx_z1=0;%%各个输出面上电流的各个分量(沿面的切向)的复数形式
FJz_x2=0;FJy_x2=0;FJz_y2=0;FJx_y2=0;FJy_z2=0;FJx_z2=0;
%**********************************************************
r0=1/3ds;c1=dt/muz/(dsds-pir0r0/4);c2=ds/2log(ds/r0);ll=9;
is=midx;js=midy;ks=midz;%%时谐激励源的位置
%*********************************************************
tic
2 通用运行步骤
(1)直接运行main.m即可一键出图
⛄三、运行结果
⛄四、matlab版本及参考文献
1 matlab版本
2019b
2 参考文献
[1]张福顺,李峰,焦永昌.宽带平面Balun偶极子天线的FDTD分析[J].现代电子技术,2003.
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化
2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类
2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测
2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测
3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别
3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建
4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题
4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划
4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划
4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配
5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏
6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏
7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断
7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真
7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真
7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰
7.5 无人机通信
7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置