题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1269
题意:给一个有向图,判断是否为强连通图。
Kosaraju是罗勇军老师的算法竞赛书介绍的求DAG的SCC数量的初级算法。SCC是强连通分量的缩写,即极大连通分量。
实现方法是给原图G建立一个反向图rG,即每条边方向取反生成的图。首先对原图G进行一遍DFS,获取原图G的拓扑序列,然后按照拓扑序列的逆序对反向图rG进行DFS,则后者DFS的次数就是SCC的数目。
主要原理是,反向图不改变原图的强连通性,G和rG的SCC数量相同。
时间复杂度为O(V+E)。
#include <bits/stdc++.h>
using namespace std;
const int M = 100000 + 5;
const int N = 10000 + 5;
vector<int> G[N], rG[N];
vector<int> S;
int vis[N], sccno[N], cnt;
void dfs1(int u) {
if (vis[u]) return;
vis[u] = 1;
for (int i = 0; i < G[u].size(); i++) dfs1(G[u][i]);
S.push_back(u);
}
void dfs2(int u) {
if (sccno[u]) return;
sccno[u] = cnt;
for (int i = 0; i < rG[u].size(); i++) dfs2(rG[u][i]);
}
void Kosaraju(int n) {
cnt = 0;
S.clear();
memset(sccno, 0, sizeof(sccno));
memset(vis, 0, sizeof(vis));
for (int i = 1; i <= n; i++) dfs1(i);
for (int i = n - 1; i >= 0; i--)
if (!sccno[S[i]]) {
cnt++;
dfs2(S[i]);
}
}
int main(void) {
// freopen("in.txt", "r", stdin);
int n, m, a, b;
while (~scanf("%d%d", &n, &m) && n) {
for (int i = 1; i <= n; i++) {
G[i].clear();
rG[i].clear();
}
for (int i = 1; i <= m; i++) {
scanf("%d%d", &a, &b);
G[a].push_back(b);
rG[b].push_back(a);
}
Kosaraju(n);
printf("%s\n", cnt == 1 ? "Yes" : "No");
}
return 0;
}