HDU 1269 迷宫城堡(Kosaraju)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1269
题意:给一个有向图,判断是否为强连通图。

Kosaraju是罗勇军老师的算法竞赛书介绍的求DAG的SCC数量的初级算法。SCC是强连通分量的缩写,即极大连通分量。

实现方法是给原图G建立一个反向图rG,即每条边方向取反生成的图。首先对原图G进行一遍DFS,获取原图G的拓扑序列,然后按照拓扑序列的逆序对反向图rG进行DFS,则后者DFS的次数就是SCC的数目。

主要原理是,反向图不改变原图的强连通性,G和rG的SCC数量相同。

时间复杂度为O(V+E)。

#include <bits/stdc++.h>
using namespace std;

const int M = 100000 + 5;
const int N = 10000 + 5;

vector<int> G[N], rG[N];
vector<int> S;
int vis[N], sccno[N], cnt;

void dfs1(int u) {
	if (vis[u]) return;
	vis[u] = 1;
	for (int i = 0; i < G[u].size(); i++) dfs1(G[u][i]);
	S.push_back(u);
}

void dfs2(int u) {
	if (sccno[u]) return;
	sccno[u] = cnt;
	for (int i = 0; i < rG[u].size(); i++) dfs2(rG[u][i]);
}

void Kosaraju(int n) {
	cnt = 0;
	S.clear();
	memset(sccno, 0, sizeof(sccno));
	memset(vis, 0, sizeof(vis));
	for (int i = 1; i <= n; i++) dfs1(i);
	for (int i = n - 1; i >= 0; i--)
		if (!sccno[S[i]]) {
			cnt++;
			dfs2(S[i]);
		}
}

int main(void) {
//	freopen("in.txt", "r", stdin);
	int n, m, a, b;
	while (~scanf("%d%d", &n, &m) && n) {
		for (int i = 1; i <= n; i++) {
			G[i].clear();
			rG[i].clear();
		}
		for (int i = 1; i <= m; i++) {
			scanf("%d%d", &a, &b);
			G[a].push_back(b);
			rG[b].push_back(a);
		}
		Kosaraju(n);
		printf("%s\n", cnt == 1 ? "Yes" : "No");
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JILIN.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值