【bzoj 1005】 明明的烦恼 【HNOI2008】

33 篇文章 0 订阅
2 篇文章 0 订阅

Description

  自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在
任意两点间连线,可产生多少棵度数满足要求的树?

Input

  第一行为N(0 < N < = 1000),
接下来N行,第i+1行给出第i个节点的度数Di,如果对度数不要求,则输入-1

Output

  一个整数,表示不同的满足要求的树的个数,无解输出0

Sample Input

3
1
-1
-1

Sample Output

2

HINT

  两棵树分别为1-2-3;1-3-2

这道题是prufer序列加数论,一棵n个节点的树可以转成一个长度为n-2的唯一的prufer序列,由此将原问题转化为已知一个长为n-2的序列,其中已知一部分元素的个数,求一共有多少这样的序列,下面是程序:
#include<stdio.h>
#include<string.h>
#include<iostream>
using namespace std;
struct Bignum{
	int a[5000],l;
	void operator *=(int p){
		int i;
		for(i=1;i<=l;i++){
			a[i]*=p;
		}
		for(i=1;i<=l;i++){
			a[i+1]+=a[i]/10;
			a[i]%=10;
		}
		while(a[l+1]){
			a[l+2]+=a[l+1]/10;
			a[l+1]%=10;
			++l;
		}
	}
};
int a[1005];
void add(int n){
	int i=2;
	while(i*i<=n){
		while(!(n%i)){
			a[i]++;
			n/=i;
		}
		i++;
	}
	if(n>1){
		a[n]++;
	}
}
void del(int n){
	int i=2;
	while(i*i<=n){
		while(!(n%i)){
			a[i]--;
			n/=i;
		}
		i++;
	}
	if(n>1){
		a[n]--;
	}
}
int main(){
	int n,sum=0,cnt=0,i,d,j;
	Bignum s;
	memset(s.a,0,sizeof(s.a));
	s.a[1]=1;
	s.l=1;
	scanf("%d",&n);
	for(i=2;i<=n-2;i++){
		add(i);
	}
	for(i=1;i<=n;i++){
		scanf("%d",&d);
		if(d!=-1){
			cnt++;
			sum+=d-1;
			for(j=2;j<d;j++){
				del(j);
			}
		}
	}
	cnt=n-cnt;
	for(i=1;i<=n-2-sum;i++){
		add(cnt);
	}
	for(i=2;i<=n-2-sum;i++){
		del(i);
	}
	for(i=1;i<=1000;i++){
		if(a[i]){
			while(a[i]--){
				s*=i;
			}
		}
	}
	for(i=s.l;i>=1;i--){
		putchar(s.a[i]+'0');
	}
	putchar('\n');
	return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值