【bzoj 1013】 球形空间产生器sphere 【JSOI2008】

Description

  有一个球形空间产生器能够在n维空间中产生一个坚硬的球体。现在,你被困在了这个n维球体中,你只知道球
面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器。

Input

  第一行是一个整数n(1<=N=10)。接下来的n+1行,每行有n个实数,表示球面上一点的n维坐标。每一个实数精确到小数点
后6位,且其绝对值都不超过20000。

Output

  有且只有一行,依次给出球心的n维坐标(n个实数),两个实数之间用一个空格隔开。每个实数精确到小数点
后3位。数据保证有解。你的答案必须和标准输出一模一样才能够得分。

Sample Input

2
0.0 0.0
-1.0 1.0
1.0 0.0

Sample Output

0.500 1.500

HINT

  提示:给出两个定义:1、 球心:到球面上任意一点距离都相等的点。2、 距离:设两个n为空间上的点A, B

的坐标为(a1, a2, …, an), (b1, b2, …, bn),则AB的距离定义为:dist = sqrt( (a1-b1)^2 + (a2-b2)^2 + 

… + (an-bn)^2 )

这道题首先设球心坐标为(x1,x2,...,xn),然后根据距离定义可以得到n+1个二次方程,接下来将第2~n+1个方程分别减去第一个方程,这样就得到了n个一次方程,最后用高斯消元解方程即可,下面是程序:
#include<stdio.h>
#include<iostream>
using namespace std;
struct Point{
	double x[15];
}m[15];
double a[15][15],s[15];
double abs(double n){
	return n>0?n:-1*n;
}
int main(){
	int n,i,j,k;
	scanf("%d",&n);
	for(i=0;i<=n;i++){
		for(j=1;j<=n;j++){
			scanf("%lf",&m[i].x[j]);
		}
	}
	for(i=1;i<=n;i++){
		for(j=1;j<=n;j++){
			a[i][j]=2*(m[i].x[j]-m[0].x[j]);
			s[i]+=m[i].x[j]*m[i].x[j]-m[0].x[j]*m[0].x[j];
		}
	}
	for(i=1;i<=n;i++){
		int tp=i;
		for(j=i;j<=n;j++){
			if(abs(a[j][i])>abs(a[tp][i])){
				tp=j;
			}
		}
		if(tp!=i){
			for(j=i;j<=n;j++){
				swap(a[i][j],a[tp][j]);
			}
			swap(s[i],s[tp]);
		}
		for(j=i+1;j<=n;j++){
			double x=a[j][i]/a[i][i];
			for(k=i;k<=n;k++){
				a[j][k]-=a[i][k]*x;
			}
			s[j]-=s[i]*x;
		}
	}
	for(i=n;i>=1;i--){
		for(j=i+1;j<=n;j++){
			s[i]-=s[j]*a[i][j];
		}
		s[i]/=a[i][i];
	}
	for(i=1;i<n;i++){
		printf("%.3lf ",s[i]);
	}
	printf("%.3lf",s[i]);
	return 0;
}

题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值