2025秋招LLM大模型多模态面试题(九)-- LoRA 面试问题大全:从理论到实践

随着深度学习模型的不断发展,微调大模型的需求也逐渐增多。然而,传统的全参数微调需要消耗大量的计算资源和显存,对于普通用户和中小企业来说负担较大。为了应对这些问题,LoRA(Low-Rank Adaptation)应运而生。LoRA 是一种高效微调技术,通过低秩分解的方式显著减少训练参数量和内存占用,适合在消费级 GPU 上进行大模型微调。在本文中,我们将通过面试题的形式,深入探讨 LoRA 的核心概念、思路以及在实际应用中的优势与挑战,帮助大家更好地理解这项技术。

目录

  1. LoRA 概念

    • 1.1 简单介绍一下 LoRA
    • 1.2 LoRA 的思路
    • 1.3 LoRA 的特点
    • 1.4 LoRA 的优点
    • 1.5 LoRA 的缺点
  2. LoRA 训练理论

    • 2.1 LoRA 权重是否可以合入原模型?
    • 2.2 ChatGLM-6B LoRA 后的权重多大?
    • 2.3 LoRA 微调方法为啥能加速训练?
    • 2.4 如何在已有 LoRA 模型上继续训练?
    • 2.5 LoRA 这种微调方法和全参数比起来有什么劣势吗?
    • 2.6 LoRA 应该作用于 Transformer 的哪个参数矩阵
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值