【bzoj 1191】 超级英雄Hero 【HNOI2006】

Description

现在电视台有一种节目叫做超级英雄,大概的流程就是每位选手到台上回答主持人的几个问题,然后根据回答问题的

多少获得不同数目的奖品或奖金。主持人问题准备了若干道题目,只有当选手正确回答一道题后,才能进入下一题

,否则就被淘汰。为了增加节目的趣味性并适当降低难度,主持人总提供给选手几个“锦囊妙计”,比如求助现场

观众,或者去掉若干个错误答案(选择题)等等。这里,我们把规则稍微改变一下。假设主持人总共有m道题,选

手有n种不同的“锦囊妙计”。主持人规定,每道题都可以从两种“锦囊妙计”中选择一种,而每种“锦囊妙计”

只能用一次。我们又假设一道题使用了它允许的锦囊妙计后,就一定能正确回答,顺利进入下一题。现在我来到了

节目现场,可是我实在是太笨了,以至于一道题也不会做,每道题只好借助使用“锦囊妙计”来通过。如果我事先

就知道了每道题能够使用哪两种“锦囊妙计”,那么你能告诉我怎样选择才能通过最多的题数吗?

Input

输入文件的一行是两个正整数n和m(0 < n <1001,0 < m < 1001)表示总共有n中“锦囊妙计”,编号为0~n-1,总共有m个问题。
以下的m行,每行两个数,分别表示第m个问题可以使用的“锦囊妙计”的编号。
注意,每种编号的“锦囊妙计”只能使用一次,同一个问题的两个“锦囊妙计”可能一样。

Output

第一行为最多能通过的题数p

Sample Input

5 6
3 2
2 0
0 3
0 4
3 2
3 2

Sample Output

4

这道题是一个显然的二分图最大匹配,只需要注意当某一个问题无法匹配时就可以直接退出(此时已被淘汰),下面是程序:

#include<stdio.h>
#include<algorithm>
#include<iostream>
using namespace std;
const int N=10005,M=20005;
struct edge{
    int u,v,c1,c2,x;
}a[M],b[M];
int n,m,k,f[N];
bool vis[M];
int findf(int u){
    return f[u]=f[u]==u?u:findf(f[u]);
}
bool cmp1(edge a,edge b){
    return a.c1<b.c1;
}
bool cmp2(edge a,edge b){
    return a.c2<b.c2;
}
int main(){
    int i,sum,ans;
    scanf("%d%d%d",&n,&k,&m);
    --m;
    for(i=1;i<=n;i++){
        f[i]=i;
    }
    for(i=1;i<=m;i++){
        scanf("%d%d%d%d",&a[i].u,&a[i].v,&a[i].c1,&a[i].c2);
        a[i].x=i;
        b[i]=a[i];
    }
    sort(a+1,a+m+1,cmp1);
    sort(b+1,b+m+1,cmp2);
    for(i=1,sum=0;i<=m;i++){
        int x=findf(a[i].u),y=findf(a[i].v);
        if(x!=y){
            f[x]=y;
            sum++;
            vis[a[i].x]=1;
        }
        if(sum==k){
            ans=a[i].c1;
            break;
        }
    }
    for(i=1;i<=m;i++){
        if(vis[b[i].x]){
            continue;
        }
        int x=findf(b[i].u),y=findf(b[i].v);
        if(x!=y){
            f[x]=y;
            ans=max(ans,b[i].c2);
            sum++;
        }
        if(sum==n-1){
            break;
        }
    }
    printf("%d\n",ans);
    return 0;
}

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值