Description
一个N*M的方格,初始时每个格子有一个整数权值,接下来每次有2个操作:
改变一个格子的权值
求一个子矩阵中某个特定权值出现的个数
Input
每一行有两个数字N,M
接下来N行,每行M个数字。第i+1行第j个数字表示格子(i,j)的初值
接下来输入一个Q,后面Q行每行描述一个操作
操作1:
1 x y c,表示将格子(x,y)的值变为c
操作2:
2 x1 x2 y1 y2 c,表示询问所有满足格子中数字为c的格子数字
(n,m<=300,Q<=5000)
(1<=x<=N,1<=y<=M,1<=c<=100)
(x1<=x<=x2,y1<=y<=y2)
Output
对于每个操作2,按输入中出现的顺序,依次输出一行一个整数表示所求得的个数
Sample Input
3 3
1 2 3
3 2 1
2 1 3
3
2 1 2 1 2 1
1 2 3 2
2 2 3 2 3 2
Sample Output
1
2
对于这道题,对每一种颜色建一个二维树状数组即可,下面是程序:
#include<stdio.h>
#include<iostream>
#define lowbit(n) n&(-n)
using namespace std;
const int N=305;
int n,m,q,map[N][N];
struct D1_tree{
int c[N];
void add(int x,int w){
while(x<=n){
c[x]+=w;
x+=lowbit(x);
}
}
int ask(int x){
int s=0;
while(x){
s+=c[x];
x-=lowbit(x);
}
return s;
}
};
struct D2_tree{
D1_tree c[N];
void add(int x,int y,int w){
while(y<=m){
c[y].add(x,w);
y+=lowbit(y);
}
}
int ask(int x,int y){
int s=0;
while(y){
s+=c[y].ask(x);
y-=lowbit(y);
}
return s;
}
}t[105];
int main(){
int i,j,a,b,c,d;
scanf("%d%d",&n,&m);
for(i=1;i<=n;i++){
for(j=1;j<=m;j++){
scanf("%d",&map[i][j]);
t[map[i][j]].add(i,j,1);
}
}
scanf("%d",&q);
while(q--){
scanf("%d",&i);
if(i==1){
scanf("%d%d%d",&a,&b,&c);
t[map[a][b]].add(a,b,-1);
t[map[a][b]=c].add(a,b,1);
}
else{
scanf("%d%d%d%d%d",&a,&c,&b,&d,&j);
--a,--b;
printf("%d\n",t[j].ask(c,d)-t[j].ask(a,d)-t[j].ask(c,b)+t[j].ask(a,b));
}
}
return 0;
}