隐马尔可夫模型前向算法推导

本文详细介绍了隐马尔可夫模型(HMM)的前向算法,通过状态转移概率和观测概率,探讨了如何计算在给定观测序列下处于特定状态的概率,以及整个观测序列出现的概率。递推方法被用于求解前向概率,为理解HMM提供关键步骤。
摘要由CSDN通过智能技术生成

已知条件有:

状态集合:,观测集合:

已观测到的观测序列 

从t时刻的状态到t+1时刻的状态的状态转移概率:

从t时刻的状态生成t时刻的观测

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值