HMM(1)前向后向算法推导

HMM(1)前向后向算法推导

看了很多博客的HMM模型,自己做一个总结加固知识点的记忆。

1 HMM基础知识点

对于HMM模型,其主要是处理序列问题,并且该问题包括一个表象的观测序列和一个可能无法直接观察到的隐藏序列(或者叫状态序列),且这两个序列都是包括 T T T个时刻的序列。观测序列的数学表达如式(1-1),状态序列的数学表达如式(1-2):
O = { o 1 , o 2 , . . . , o T } (1-1) O=\lbrace o_1,o_2,...,o_T \rbrace \tag{1-1} O={o1,o2,...,oT}(1-1) Q = { q 1 , q 2 , . . . , q T } (1-2) Q=\lbrace q_1,q_2,...,q_T \rbrace \tag{1-2} Q={q1,q2,...,qT}(1-2)
对于观测序列的每一个 o t o_t ot可以有 N N N个不同的观测值,对于状态序列的每一个 q t q_t qt可以有 M M M个不同的状态值,具体的数学表达如下:
o t = { v 1 , v 2 , . . . , v N } (1-3) o_t=\lbrace v_1,v_2,...,v_N\rbrace\tag{1-3} ot={v1,v2,...,vN}(1-3) q t = { σ 1 , σ 2 , . . . , σ M } (1-4) q_t=\lbrace \sigma_1,\sigma_2,...,\sigma_M\rbrace\tag{1-4} qt={σ1,σ2,...,σM}(1-4)

HMM中有两个重要的假设

  1. 齐次马尔科夫链假设。也就是说任意时刻的隐藏状态都只和前一时刻的隐藏状态有关,如式(1-5)。因此产生了一个概念,就是隐状态转移概率, a i j a_{ij} aij,表示隐藏状态从 t t t时刻的状态 i i i转换为 t + 1 t+1 t+1时刻的状态 j j j的概率。每一个隐状态转移到另一个状态的概率集合可以通过状态转移矩阵来表示,如(1-6)。
    P ( q t + 1 ∣ q t , q t − 1 , q t − 2 , . . . , q 1 ) = P ( q t + 1 ∣ q t ) (1-5) P(q_{t+1}|q_t,q_{t-1},q_{t-2},...,q_{1})=P(q_t+1|q_t)\tag{1-5} P(qt+1qt,qt1,qt2,...,q1)=P(qt+1qt)(1-5) A = [ a i j ] M × M ; i ∈ { 1 , 2 , . . . , M } , j ∈ { 1 , 2 , . . . , M } (1-6) A=[a_{ij}]_{M\times M} ;i\in\{1,2,...,M\},j\in\{1,2,...,M\}\tag{1-6} A=[aij]M×M;i{1,2,...,M},j{1,2,...,M}(1-6)
  2. 观测独立性假设。也就是说任意时刻的观测状态只与当前时刻的隐藏状态有关,如式(1-7)。因此产生了一个概念,就是发射概率 b j ( k ) b_j(k) bj(k),表示在时刻 t t t时隐藏状态 q t q_t qt i j i_j ij时,观测结果 o t o_t ot v k v_k vk的概率。每一个有状态到每一个不同的观测结果的发射概率的集合可以通过发射矩阵来表示,如(1-8)。
    P ( o t ∣ q t , q t − 1 , . . . , q 1 ) = P ( o t ∣ q t ) (1-7) P(o_t|q_t,q_{t-1},...,q_1)=P(o_t|q_t)\tag{1-7} P(otqt,qt1,...,q1)=P(otqt)(1-7) B = [ b j ( k ) ] M × N ; j ∈ { 1 , 2 , . . . , M } , k ∈ { 1 , 2 , . . . , N } (1-8) B=[b_j(k)]_{M\times N};j\in\{1,2,...,M\},k\in\{1,2,...,N\}\tag{1-8} B=[bj(k)]M×N;j{1,2,...,M},k{1,2,...,N}(1-8)

除了上面的隐状态转移矩阵和发射矩阵,还需要一个在 t = 1 t=1 t=1时每一个隐藏状态的初始分布 Π \Pi Π,如(1-9)所示。
Π = [ π ( i ) ] N ; π ( i ) = P ( q 1 = i ) ; i ∈ { 1 , 2 , . . . , M } (1-9) \Pi=[\pi(i)]_N;\pi(i)=P(q_1=i);i\in\{1,2,...,M\}\tag{1-9} Π=[π(i)]N;π(i)=P(q1=i);i{1,2,...,M}(1-9)
因此,一个HMM模型可以通过一个三元组 λ ( A , B , Π ) \lambda(A,B,\Pi) λ(A,B,Π)来表示。

2 前向后向算法

前向和后向算法都是为了解决HMM中的第一个问题,即在观测序列 O O O和模型参数 λ \lambda λ都已知,状态序列 Q Q Q未知的条件下求产生这样的观测序列的概率是多少,也就是求 P ( O ∣ λ ) = ∑ Q P ( O , Q ∣ λ ) P(O|\lambda)=\sum_QP(O,Q|\lambda) P(Oλ)=QP(O,Qλ)。由于通过暴力搜索来计算每一种隐状态序列产生观测序列概率的复杂度很高, Θ ( T N T ) \Theta(TN^T) Θ(TNT),所以需要通过前向后向算法来简化计算的复杂度, Θ ( T N 2 ) \Theta(TN^2) Θ(TN2)

2-1 前向算法

前向算法的推导可以通过动态规划的思想逐步求解出来,首先我们定义前向概率,即观测序列是 o 1 , o 2 , . . . , o t o_1,o_2,...,o_t o1,o2,...,ot,且 t t t时刻的隐状态是 σ i \sigma_i σi时的概率,数学表达如式(2-1):
α t ( i ) = P ( o 1 , o 2 , . . . , o t , q t = σ i ∣ λ ) ; i ∈ { 1 , 2 , . . . , M } (2-1) \alpha_t(i)=P(o_1,o_2,...,o_t,q_t=\sigma_i|\lambda);i\in\{1,2,...,M\}\tag{2-1} αt(i)=P(o1,o2,...,ot,qt=σiλ);i{1,2,...,M}(2-1)
前向算法推导过程如下所示:
α t + 1 ( i ) = P ( o 1 , o 2 , . . . , o t , o t + 1 , q t + 1 = σ j ∣ λ ) = P ( o 1 , o 2 , . . . , o t , o t + 1 ∣ q t + 1 = σ j , λ ) P ( q t + 1 = σ j ∣ λ ) = P ( o 1 , o 2 , . . . , o t ∣ q t + 1 = σ j , λ ) P ( o t + 1 ∣ q t + 1 , λ ) P ( q t + 1 = σ j ∣ λ ) = P ( o 1 , o 2 , . . . , o t , q t + 1 = σ j ∣ λ ) P ( o t + 1 ∣ q t + 1 , λ ) = ∑ i M P ( o 1 , o 2 , . . . , o t , q t = σ i , q t + 1 = σ j ∣ λ ) P ( o t + 1 ∣ q t + 1 , λ ) = ∑ i M P ( o 1 , o 2 , . . . , o t , q t + 1 = σ j ∣ q t = σ i , λ ) P ( q t = σ i ∣ λ ) P ( o t + 1 ∣ q t + 1 , λ ) = ∑ i M P ( o 1 , o 2 , . . . , o t ∣ q t = σ i , λ ) P ( q t + 1 = σ j ∣ q t = σ i , λ ) P ( q t = σ i ∣ λ ) P ( o t + 1 ∣ q t + 1 , λ ) = ∑ i M P ( o 1 , o 2 , . . . , o t , q t = σ i ∣ λ ) P ( q t + 1 = σ j ∣ q t = σ i , λ ) P ( o t + 1 ∣ q t + 1 , λ ) = [ ∑ i M α t ( i ) a i j ] b j ( o t + 1 ) = [ ∑ i M α t ( i ) × 状 态 转 移 概 率 ] × 发 射 概 率 \begin{aligned} \alpha_{t+1}(i) & =P(o_1,o_2,...,o_t,o_{t+1},q_{t+1}=\sigma_j|\lambda) \\ & = P(o_1,o_2,...,o_t,o_{t+1}|q_{t+1}=\sigma_j,\lambda)P(q_{t+1}=\sigma_j|\lambda)\\ & = P(o_1,o_2,...,o_t|q_{t+1}=\sigma_j,\lambda)P(o_{t+1}|q_{t+1},\lambda)P(q_{t+1}=\sigma_j|\lambda)\\ & = P(o_1,o_2,...,o_t,q_{t+1}=\sigma_j|\lambda)P(o_{t+1}|q_{t+1},\lambda)\\ & =\sum_{i}^MP(o_1,o_2,...,o_t,q_t=\sigma_i,q_{t+1}=\sigma_j|\lambda)P(o_{t+1}|q_{t+1},\lambda) \\ & =\sum_{i}^MP(o_1,o_2,...,o_t,q_{t+1}=\sigma_j|q_t=\sigma_i,\lambda)P(q_t=\sigma_i|\lambda)P(o_{t+1}|q_{t+1},\lambda) \\ & =\sum_{i}^MP(o_1,o_2,...,o_t|q_t=\sigma_i,\lambda)P(q_{t+1}=\sigma_j|q_t=\sigma_i,\lambda)P(q_t=\sigma_i|\lambda)P(o_{t+1}|q_{t+1},\lambda) \\ & =\sum_{i}^MP(o_1,o_2,...,o_t,q_t=\sigma_i|\lambda)P(q_{t+1}=\sigma_j|q_t=\sigma_i,\lambda)P(o_{t+1}|q_{t+1},\lambda) \\ & =\left[\sum_i^M\alpha_t(i)a_{ij}\right]b_j(o_{t+1}) \\ & =\left[\sum_i^M\alpha_t(i)\times状态转移概率\right]\times发射概率 \end{aligned} αt+1(i)=P(o1,o2,...,ot,ot+1,qt+1=σjλ)=P(o1,o2,...,ot,ot+1qt+1=σj,λ)P(qt+1=σjλ)=P(o1,o2,...,otqt+1=σj,λ)P(ot+1qt+1,λ)P(qt+1=σjλ)=P(o1,o2,...,ot,qt+1=σjλ)P(ot+1qt+1,λ)=iMP(o1,o2,...,ot,qt=σi,qt+1=σjλ)P(ot+1qt+1,λ)=iMP(o1,o2,...,ot,qt+1=σjqt=σi,λ)P(qt=σiλ)P(ot+1qt+1,λ)=iMP(o1,o2,...,otqt=σi,λ)P(qt+1=σjqt=σi,λ)P(qt=σiλ)P(ot+1qt+1,λ)=iMP(o1,o2,...,ot,qt=σiλ)P(qt+1=σjqt=σi,λ)P(ot+1qt+1,λ)=[iMαt(i)aij]bj(ot+1)=[iMαt(i)×]×
因此,问题一的最终结果是 P ( O ∣ λ ) = ∑ i M α T ( i ) P(O|\lambda)=\sum_i^M\alpha_T(i) P(Oλ)=iMαT(i),其中 α T ( i ) \alpha_T(i) αT(i)可以通过以上的公式推导逐步的计算出来。

2-2 后向算法

后向算法的推导和前向算法的思想一样,都是通过动态规划的思想逐步推导出最终结果。和前向概率一样,我们需要先定义一个后向概率如式(2-2)。
β t + 1 ( j ) = P ( o t + 2 , o t + 3 , . . . , o T ∣ q t + 1 = σ j , λ ) (2-2) \beta_{t+1}(j)=P(o_{t+2},o_{t+3},...,o_T|q_{t+1}=\sigma_j,\lambda)\tag{2-2} βt+1(j)=P(ot+2,ot+3,...,oTqt+1=σj,λ)(2-2)
后向算法推导过程如下所示:
β t ( i ) = P ( o t + 1 , o t + 2 , . . . , o T ∣ q t = σ i , λ ) = ∑ j M P ( o t + 1 , o t + 2 , . . . , o T , q t + 1 = σ j ∣ q t = σ i , λ ) = ∑ j M P ( o t + 1 , o t + 2 , . . . , o T ∣ q t + 1 = σ j , q t = σ i , λ ) P ( q t + 1 = σ j ∣ q t = σ i , λ ) = ∑ j M P ( o t + 1 , o t + 2 , . . . , o T ∣ q t + 1 = σ j , λ ) P ( q t + 1 = σ j ∣ q t = σ i , λ ) = ∑ j M P ( o t + 2 , . . . , o T ∣ q t + 1 = σ j , λ ) P ( q t + 1 = σ j ∣ q t = σ i , λ ) P ( o t + 1 ∣ q t + 1 = σ j , λ ) = ∑ j M β t + 1 ( j ) a i j b j ( o t + 1 ) = ∑ j M β t + 1 ( j ) × 状 态 转 移 概 率 × 发 射 概 率 \begin{aligned} \beta_t(i) &= P(o_{t+1},o_{t+2},...,o_T|q_{t}=\sigma_i,\lambda) \\ & =\sum_{j}^MP(o_{t+1},o_{t+2},...,o_T,q_{t+1}=\sigma_j|q_{t}=\sigma_i,\lambda) \\ & =\sum_j^MP(o_{t+1},o_{t+2},...,o_T|q_{t+1}=\sigma_j,q_{t}=\sigma_i,\lambda)P(q_{t+1}=\sigma_j|q_{t}=\sigma_i,\lambda) \\ & =\sum_j^MP(o_{t+1},o_{t+2},...,o_T|q_{t+1}=\sigma_j,\lambda)P(q_{t+1}=\sigma_j|q_{t}=\sigma_i,\lambda) \\ & =\sum_j^MP(o_{t+2},...,o_T|q_{t+1}=\sigma_j,\lambda)P(q_{t+1}=\sigma_j|q_{t}=\sigma_i,\lambda)P(o_{t+1}|q_{t+1}=\sigma_j,\lambda) \\ & =\sum_j^M\beta_{t+1}(j)a_{ij}b_j(o_{t+1}) \\ & =\sum_j^M\beta_{t+1}(j)\times状态转移概率\times发射概率 \end{aligned} βt(i)=P(ot+1,ot+2,...,oTqt=σi,λ)=jMP(ot+1,ot+2,...,oT,qt+1=σjqt=σi,λ)=jMP(ot+1,ot+2,...,oTqt+1=σj,qt=σi,λ)P(qt+1=σjqt=σi,λ)=jMP(ot+1,ot+2,...,oTqt+1=σj,λ)P(qt+1=σjqt=σi,λ)=jMP(ot+2,...,oTqt+1=σj,λ)P(qt+1=σjqt=σi,λ)P(ot+1qt+1=σj,λ)=jMβt+1(j)aijbj(ot+1)=jMβt+1(j)××
因此,问题一的最终结果是 P ( O ∣ λ ) = ∑ i π ( i ) b i ( o 1 ) β 1 ( i ) P(O|\lambda)=\sum_i\pi(i)b_i(o_1)\beta_1(i) P(Oλ)=iπ(i)bi(o1)β1(i),其中 β 1 ( i ) \beta_1(i) β1(i)可以通过以上的公式推导逐步的计算出来。

2-3 衍生公式推导

根据前向和后向算法我们可以推导出其他的公式。如式(2-3)所示,是在模型参数 λ \lambda λ和观测序列 O O O都已知的情况下, t t t时刻的隐状态是 σ i \sigma_i σi的概率。
γ t ( i ) = P ( q t = σ i ∣ O , λ ) = P ( O , q t = σ i ∣ λ ) P ( O ∣ λ ) = P ( o 1 , o 2 , . . . , o T , q t = σ i ∣ λ ) ∑ j M P ( o 1 , o 2 , . . . , o T , q t = σ j ∣ λ ) = P ( o 1 , o 2 , . . . , o T ∣ q t = σ i , λ ) P ( q t = σ i ∣ λ ) ∑ j M P ( o 1 , o 2 , . . . , o T ∣ q t = σ j , λ ) P ( q t = σ j ∣ λ ) = P ( o 1 , o 2 , . . . , o t , q t = σ i ∣ λ ) P ( o t + 1 , o t + 2 , . . . , o T ∣ q t = σ i , λ ) ∑ j M P ( o 1 , o 2 , . . . , o t , q t = σ j ∣ λ ) P ( o t + 1 , o t + 2 , . . . , o T ∣ q t = σ j , λ ) = α t ( i ) β t ( i ) ∑ j M α t ( j ) β t ( j ) (2-3) \begin{aligned} \gamma_t(i) & =P(q_t=\sigma_i|O,\lambda) \\ & =\frac{P(O,q_t=\sigma_i|\lambda)}{P(O|\lambda)} \tag{2-3}\\[4ex] & = \frac{P(o_1,o_2,...,o_T,q_t=\sigma_i|\lambda)}{\sum_j^MP(o_1,o_2,...,o_T,q_t=\sigma_j|\lambda)} \\[4ex] & =\frac{P(o_1,o_2,...,o_T|q_t=\sigma_i,\lambda)P(q_t=\sigma_i|\lambda)}{\sum_j^MP(o_1,o_2,...,o_T|q_t=\sigma_j,\lambda)P(q_t=\sigma_j|\lambda)} \\[4ex] & =\frac{P(o_1,o_2,...,o_t,q_t=\sigma_i|\lambda)P(o_{t+1},o_{t+2},...,o_T|q_t=\sigma_i,\lambda)}{\sum_j^MP(o_1,o_2,...,o_t,q_t=\sigma_j|\lambda)P(o_{t+1},o_{t+2},...,o_T|q_t=\sigma_j,\lambda)} \\[4ex] & =\frac{\alpha_t(i)\beta_t(i)}{\sum_j^M\alpha_t(j)\beta_t(j)} \end{aligned} γt(i)=P(qt=σiO,λ)=P(Oλ)P(O,qt=σiλ)=jMP(o1,o2,...,oT,qt=σjλ)P(o1,o2,...,oT,qt=σiλ)=jMP(o1,o2,...,oTqt=σj,λ)P(qt=σjλ)P(o1,o2,...,oTqt=σi,λ)P(qt=σiλ)=jMP(o1,o2,...,ot,qt=σjλ)P(ot+1,ot+2,...,oTqt=σj,λ)P(o1,o2,...,ot,qt=σiλ)P(ot+1,ot+2,...,oTqt=σi,λ)=jMαt(j)βt(j)αt(i)βt(i)(2-3)
如式(2-4)所示,在模型参数 λ \lambda λ和观测序列 O O O都已知的情况下, t t t时刻的隐状态是 σ i \sigma_i σi t + 1 t+1 t+1时刻的隐状态是 σ j \sigma_j σj的概率。
ξ t ( i , j ) = P ( q t = σ i , q t + 1 = σ j ∣ O , λ ) = P ( q t = σ i , q t + 1 = σ j , O ∣ λ ) P ( O ∣ λ ) = P ( o 1 , o 2 , . . . , o T , q t = σ i , q t + 1 = σ j ∣ λ ) ∑ s M ∑ r M P ( o 1 , o 2 , . . . , o T , q t = σ s , q t + 1 = σ r ∣ λ ) = P ( o 1 , o 2 , . . . , o T , q t = σ i ∣ q t + 1 = σ j , λ ) P ( q t + 1 = σ j ∣ λ ) ∑ s M ∑ r M P ( o 1 , o 2 , . . . , o T , q t = σ s , q t + 1 = σ r ∣ λ ) = P ( o 1 , o 2 , . . . , o t , q t = σ i ∣ q t + 1 = σ j , λ ) P ( o t + 1 , o t + 2 , . . . , o T ∣ q t + 1 = σ j , λ ) P ( q t + 1 = σ j ∣ λ ) ∑ s M ∑ r M P ( o 1 , o 2 , . . . , o T , q t = σ s , q t + 1 = σ r ∣ λ ) = P ( o 1 , o 2 , . . . , o t , q t = σ i , q t + 1 = σ j ∣ λ ) P ( o t + 1 ∣ q t + 1 = σ j , λ ) P ( o t + 2 , o t + 3 , . . . , o T ∣ q t + 1 = σ j , λ ) ∑ s M ∑ r M P ( o 1 , o 2 , . . . , o T , q t = σ s , q t + 1 = σ r ∣ λ ) = P ( o 1 , o 2 , . . . , o t , q t + 1 = σ j ∣ q t = σ i , λ ) P ( q t = σ i ∣ λ ) P ( o t + 1 ∣ q t + 1 = σ j , λ ) P ( o t + 2 , o t + 3 , . . . , o T ∣ q t + 1 = σ j , λ ) ∑ s M ∑ r M P ( o 1 , o 2 , . . . , o T , q t = σ s , q t + 1 = σ r ∣ λ ) = P ( o 1 , o 2 , . . . , o t , q t = σ i ∣ λ ) P ( q t + 1 = σ j ∣ q t = σ i ) P ( o t + 1 ∣ q t + 1 = σ j , λ ) P ( o t + 2 , o t + 3 , . . . , o T ∣ q t + 1 = σ j , λ ) ∑ s M ∑ r M P ( o 1 , o 2 , . . . , o T , q t = σ s , q t + 1 = σ r ∣ λ ) = α t ( i ) a i j b j ( o t + 1 ) β t + 1 ( j ) ∑ s M ∑ r M α t ( s ) a s r b r ( o t + 1 ) β t + 1 ( r ) (2-4) \begin{aligned} \xi_t(i,j) & =P(q_t=\sigma_i,q_{t+1}=\sigma_j|O,\lambda) \\ & =\frac{P(q_t=\sigma_i,q_{t+1}=\sigma_j,O|\lambda)}{P(O|\lambda)} \\[2ex] & =\frac{P(o_1,o_2,...,o_T,q_t=\sigma_i,q_{t+1}=\sigma_j|\lambda)}{\sum_s^M\sum_r^MP(o_1,o_2,...,o_T,q_t=\sigma_s,q_{t+1}=\sigma_r|\lambda)} \\[4ex] & =\frac{P(o_1,o_2,...,o_T,q_t=\sigma_i|q_{t+1}=\sigma_j,\lambda)P(q_{t+1}=\sigma_j|\lambda)}{\sum_s^M\sum_r^MP(o_1,o_2,...,o_T,q_t=\sigma_s,q_{t+1}=\sigma_r|\lambda)} \tag{2-4}\\[4ex] & =\frac{P(o_1,o_2,...,o_t,q_t=\sigma_i|q_{t+1}=\sigma_j,\lambda)P(o_{t+1},o_{t+2},...,o_T|q_{t+1}=\sigma_j,\lambda)P(q_{t+1}=\sigma_j|\lambda)}{\sum_s^M\sum_r^MP(o_1,o_2,...,o_T,q_t=\sigma_s,q_{t+1}=\sigma_r|\lambda)} \\[4ex] & =\frac{P(o_1,o_2,...,o_t,q_t=\sigma_i,q_{t+1}=\sigma_j|\lambda)P(o_{t+1}|q_{t+1}=\sigma_j,\lambda)P(o_{t+2},o_{t+3},...,o_T|q_{t+1}=\sigma_j,\lambda)}{\sum_s^M\sum_r^MP(o_1,o_2,...,o_T,q_t=\sigma_s,q_{t+1}=\sigma_r|\lambda)} \\[4ex] & =\frac{P(o_1,o_2,...,o_t,q_{t+1}=\sigma_j|q_t=\sigma_i,\lambda)P(q_t=\sigma_i|\lambda)P(o_{t+1}|q_{t+1}=\sigma_j,\lambda)P(o_{t+2},o_{t+3},...,o_T|q_{t+1}=\sigma_j,\lambda)}{\sum_s^M\sum_r^MP(o_1,o_2,...,o_T,q_t=\sigma_s,q_{t+1}=\sigma_r|\lambda)} \\[4ex] & =\frac{P(o_1,o_2,...,o_t,q_t=\sigma_i|\lambda)P(q_{t+1}=\sigma_j|q_t=\sigma_i)P(o_{t+1}|q_{t+1}=\sigma_j,\lambda)P(o_{t+2},o_{t+3},...,o_T|q_{t+1}=\sigma_j,\lambda)}{\sum_s^M\sum_r^MP(o_1,o_2,...,o_T,q_t=\sigma_s,q_{t+1}=\sigma_r|\lambda)} \\[4ex] & =\frac{\alpha_t(i)a_{ij}b_j(o_{t+1})\beta_{t+1}(j)}{\sum_s^M\sum_r^M\alpha_t(s)a_{sr}b_r(o_{t+1})\beta_{t+1}(r)} \end{aligned} ξt(i,j)=P(qt=σi,qt+1=σjO,λ)=P(Oλ)P(qt=σi,qt+1=σj,Oλ)=sMrMP(o1,o2,...,oT,qt=σs,qt+1=σrλ)P(o1,o2,...,oT,qt=σi,qt+1=σjλ)=sMrMP(o1,o2,...,oT,qt=σs,qt+1=σrλ)P(o1,o2,...,oT,qt=σiqt+1=σj,λ)P(qt+1=σjλ)=sMrMP(o1,o2,...,oT,qt=σs,qt+1=σrλ)P(o1,o2,...,ot,qt=σiqt+1=σj,λ)P(ot+1,ot+2,...,oTqt+1=σj,λ)P(qt+1=σjλ)=sMrMP(o1,o2,...,oT,qt=σs,qt+1=σrλ)P(o1,o2,...,ot,qt=σi,qt+1=σjλ)P(ot+1qt+1=σj,λ)P(ot+2,ot+3,...,oTqt+1=σj,λ)=sMrMP(o1,o2,...,oT,qt=σs,qt+1=σrλ)P(o1,o2,...,ot,qt+1=σjqt=σi,λ)P(qt=σiλ)P(ot+1qt+1=σj,λ)P(ot+2,ot+3,...,oTqt+1=σj,λ)=sMrMP(o1,o2,...,oT,qt=σs,qt+1=σrλ)P(o1,o2,...,ot,qt=σiλ)P(qt+1=σjqt=σi)P(ot+1qt+1=σj,λ)P(ot+2,ot+3,...,oTqt+1=σj,λ)=sMrMαt(s)asrbr(ot+1)βt+1(r)αt(i)aijbj(ot+1)βt+1(j)(2-4)

  • 10
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值