基于虚拟磁链锁相环控制的双向逆变器Simulink仿真:无需电压采样的锁相控制

基于虚拟磁链锁相环控制的双向逆变器Simulink仿真,无需 电压采样进行锁相控制

ID:39850639228991167

腾飞仿真


基于虚拟磁链锁相环控制的双向逆变器Simulink仿真,无需电压采样进行锁相控制

近年来,随着电力系统的发展和智能电网的推广,双向逆变器作为一种重要的电力电子设备,被广泛应用于能量转换和电能质量控制等领域。传统的双向逆变器锁相控制中,常常需要使用电压采样技术来获取电网的相位信息,从而实现准确的锁相控制。然而,电压采样会引入额外的硬件成本和复杂性,同时降低系统的稳定性。

为了克服传统方法的局限性,一种基于虚拟磁链锁相环控制的双向逆变器Simulink仿真方案被提出。该方案通过模拟磁链来实现锁相控制,无需电压采样,从而简化了系统的设计和实现流程。同时,该方案具有较高的稳定性和鲁棒性,能够适应不同工况下的电网相位变化。

在该方案中,首先建立了双向逆变器的模型。该模型包括了逆变器的功率电路、控制电路和滤波电路等部分,其中控制电路采用了虚拟磁链锁相环控制策略。虚拟磁链是根据电网频率和电压波形计算得到的仿真磁链,

内容概要:本文档提供了三种神经网络控制器(NNPC、MRC和NARMA-L2)在机器人手臂模型上性能比较的MATLAB实现代码及详细解释。首先初始化工作空间并设定仿真参数,包括仿真时间和采样时间等。接着定义了机器人手臂的二阶动力学模型参数,并将其转换为离散时间系统。对于参考信号,可以选择方波或正弦波形式。然后分别实现了三种控制器的具体算法:MRC通过定义参考模型参数并训练神经网络来实现控制;NNPC利用预测模型神经网络并结合优化算法求解控制序列;NARMA-L2则通过两个神经网络分别建模f和g函数,进而实现控制律。最后,对三种控制器进行了性能比较,包括计算均方根误差、最大误差、调节时间等指标,并绘制了响应曲线和跟踪误差曲线。此外,还强调了机器人手臂模型参数的一致性和参考信号设置的规范性,提出了常见问题的解决方案以及性能比较的标准化方法。 适合人群:具备一定编程基础,特别是熟悉MATLAB编程语言的研究人员或工程师,以及对神经网络控制理论有一定了解的技术人员。 使用场景及目标:①理解不同类型的神经网络控制器的工作原理;②掌握在MATLAB中实现这些控制器的方法;③学会如何设置合理的参考信号并保证模型参数的一致性;④能够根据具体的性能指标对比不同控制器的效果,从而选择最适合应用场景的控制器。 其他说明:本文档不仅提供了完整的实验代码,还对每个步骤进行了详细的注释,有助于读者更好地理解每段代码的功能。同时,针对可能出现的问题给出了应的解决办法,确保实验结果的有效性和可靠性。为了使性能比较更加公平合理,文档还介绍了标准化的测试流程和评估标准,这对于进一步研究和应用具有重要的指导意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值