还记得什么是回归吗?回忆下回归就是连续的输出,分类是离散的。
回归模型一般分为:①线性回归——就是线性方程,类似为一元一次方程(y=wx+b),比如你的年龄;
②逻辑回归(类似为曲线方程)
线性回归
先来详细的学习下线性回归,线性回归就是回归模型中最简单的,就像一元一次方程(y=wx+b)是数学方程组中最简单易学的一样。假设我们要知道y的取值范围,我们只需要知道w和b的值就可以了。
打个比方来说,我们来预测下某房子的价格,在这个问题中我们正常会需要两个特征,一个是房子地段信息,一个是房子面积。不难理解吧,这时候我们可以构建一个数学方程ŷ =x1+x2+b(b是常数,可要可不要)。
其中x1代表地段,这个地段的值肯定是某一个变量(也称权重系数)w和基础数值f组成的,比如地段平均是3000,好的地段和不好的地段之间肯定存在某一个变量w来决定价值,才能决定地段的高低之分,即x1=w₁f₁。所以我们的方程又可以变成—— ŷ =w₁f₁+x2+b,能理解吗?
接着分解x2代表的面积b,我们详细分解下,如果有建筑面积和套内面积等,我们也可以找到一个方程组打个比方x₂f₂来表示只针对面积的对吧,那么问题解就变成了ŷ =w₁f₁+w₂f₂+b。
我们接着可以看出来,我们关键点就在w₁和w₂上,也就是说线性回归的目标就是学习这两个权重系数:w₁和w₂。
注意下:有多少特征就有多少X,仅有一个特征变量的特殊例子,我们叫做简单线性回归。有M个特征的,就可以分解出M个权重系数,用公式表达为:
我们再稍深入的理解下这个线性方程模型,如果只有一个特征,那么ŷ 的取值就是一条线对吧(ŷ =w₁f₁+b)。有两个特征&