文章目录
Redis 命令参考
https://github.com/doocs/technical-books#database
1. 数据结构
memcached和redis性能差不多(10-30w qps)
Memcached 是多线程,非阻塞 IO 复用的网络模型;Redis 使用单线程的多路 IO 复用模型(Redis 6.0 引入了多线程 IO )
redis提供更丰富的附加功能:发布订阅模型、Lua脚本、事务等
redis过期数据的删除策略有惰性删除和定期删除,而Memcached 只有惰性删除
我们知道一般cpu从内存中读取数据会先读取到 cache line(缓存行),
一个缓存行基本占64个字节,其中redisObject最少占16个字节(根据属性的类型计算得出),所以如果要读取一个 redisObject,会发现只读取了16个字节,剩下的48个字节的空间相当于浪费,所以为了提高性能(主要减少了内存读取的次数),所以再RedisObject空间后又开辟48个字节的连续空间,将ptr指向的值存入其中,注意此处存入的是字符串类型,48个字节对应的是sdshdr8存储结构。而
sdshdr8 在不存入数据的情况下,最少要 4 个字节(其中一个字节是字符串尾部的’\0’),那么还剩余 44 个字节,所以如果在 44 个字节以内字符串就可以放在缓存行里面,从而减少了内存I/O次数
typedef struct redisObject {
// 类型
unsigned type:4;
// 编码
unsigned encoding:4;
// 对象最后一次被访问的时间
unsigned lru:REDIS_LRU_BITS; /* lru time (relative to server.lruclock) */
// 引用计数
int refcount;
// 指向实际值的指针
void *ptr;
} robj;
127.0.0.1:6379> OBJECT encoding names
"embstr"
127.0.0.1:6379> set key 234
OK
127.0.0.1:6379> OBJECT encoding key
"int"
127.0.0.1:6379> type key
string
举一个简单的例子,你在Redis中设置一个字符串key 234
,然后查看这个字符串的存储类型就会看到为int类型,非整数型的使用的是embstr储存类型,具体操作如下图所示:
1.1 string type
1.1.1 string的3种encoding方式
1.1.1.1 int encoding
指的是 int64
127.0.0.1:6379> set int_test 9223372036854775807
OK
127.0.0.1:6379> OBJECT encoding int_test
"int"
127.0.0.1:6379> set int_test 9223372036854775808
OK
127.0.0.1:6379> OBJECT encoding int_test
"embstr"
1.1.1.2 embstr encoding
字符串长度小于等于32B
1.1.1.3 raw encoding
sds对象
1.1.2 sds
sds的优点
1.2 hash
1.2.1 hash 数据结构的定义
/* Redis database representation. There are multiple databases identified
* by integers from 0 (the default database) up to the max configured
* database. The database number is the 'id' field in the structure. */
typedef struct redisDb {
// 数据库键空间,保存着数据库中的所有键值对
dict *dict; /* The keyspace for this DB */
// 键的过期时间,字典的键为键,字典的值为过期事件 UNIX 时间戳
dict *expires; /* Timeout of keys with a timeout set */
// 正处于阻塞状态的键
dict *blocking_keys; /* Keys with clients waiting for data (BLPOP) */
// 可以解除阻塞的键
dict *ready_keys; /* Blocked keys that received a PUSH */
// 正在被 WATCH 命令监视的键
dict *watched_keys; /* WATCHED keys for MULTI/EXEC CAS */
struct evictionPoolEntry *eviction_pool; /* Eviction pool of keys */
// 数据库号码
int id; /* Database ID */
// 数据库的键的平均 TTL ,统计信息
long long avg_ttl; /* Average TTL, just for stats */
} redisDb;
/*
* 字典类型特定函数
*/
typedef struct dictType {
// 计算哈希值的函数
unsigned int (*hashFunction)(const void *key);
// 复制键的函数
void *(*keyDup)(void *privdata, const void *key);
// 复制值的函数
void *(*valDup)(void *privdata, const void *obj);
// 对比键的函数
int (*keyCompare)(void *privdata, const void *key1, const void *key2);
// 销毁键的函数
void (*keyDestructor)(void *privdata, void *key);
// 销毁值的函数
void (*valDestructor)(void *privdata, void *obj);
} dictType;
- dictht
hash_value % size
和 hash_value & (size - 1)
是一个效果
table: 指向指针的数组
/* This is our hash table structure. Every dictionary has two of this as we
* implement incremental rehashing, for the old to the new table. */
/*
* 哈希表
*
* 每个字典都使用两个哈希表,从而实现渐进式 rehash 。
*/
typedef struct dictht {
// 哈希表数组
dictEntry **table;
// 哈希表大小
unsigned long size;
// 哈希表大小掩码,用于计算索引值
// 总是等于 size - 1
unsigned long sizemask;
// 该哈希表已有节点的数量
unsigned long used;
} dictht;
/*
* 字典
*/
typedef struct dict {
// 类型特定函数
dictType *type;
// 私有数据
void *privdata;
// 哈希表
dictht ht[2];
// rehash 索引
// 当 rehash 不在进行时,值为 -1
int rehashidx; /* rehashing not in progress if rehashidx == -1 */
// 目前正在运行的安全迭代器的数量
int iterators; /* number of iterators currently running */
} dict;
/*
* 哈希表节点
*/
typedef struct dictEntry {
// 键
void *key;
// 值
union {
void *val;
uint64_t u64;
int64_t s64;
} v;
// 指向下个哈希表节点,形成链表
struct dictEntry *next;
} dictEntry;
1.2.2 渐进式rehash
- 多步rehash定义:
/* Performs N steps of incremental rehashing. Returns 1 if there are still
* keys to move from the old to the new hash table, otherwise 0 is returned.
*
* 执行 N 步渐进式 rehash 。
*
* 返回 1 表示仍有键需要从 0 号哈希表移动到 1 号哈希表,
* 返回 0 则表示所有键都已经迁移完毕。
*
* Note that a rehashing step consists in moving a bucket (that may have more
* than one key as we use chaining) from the old to the new hash table.
*
* 注意,每步 rehash 都是以一个哈希表索引(桶)作为单位的,
* 一个桶里可能会有多个节点,
* 被 rehash 的桶里的所有节点都会被移动到新哈希表。
*
* T = O(N)
*/
int dictRehash(dict *d, int n) {
// 只可以在 rehash 进行中时执行
if (!dictIsRehashing(d)) return 0;
// 进行 N 步迁移
// T = O(N)
while(n--) {
dictEntry *de, *nextde;
/* Check if we already rehashed the whole table... */
// 如果 0 号哈希表为空,那么表示 rehash 执行完毕
// T = O(1)
if (d->ht[0].used == 0) {
// 释放 0 号哈希表
zfree(d->ht[0].table);
// 将原来的 1 号哈希表设置为新的 0 号哈希表
d->ht[0] = d->ht[1];
// 重置旧的 1 号哈希表
_dictReset(&d->ht[1]);
// 关闭 rehash 标识
d->rehashidx = -1;
// 返回 0 ,向调用者表示 rehash 已经完成
return 0;
}
/* Note that rehashidx can't overflow as we are sure there are more
* elements because ht[0].used != 0 */
// 确保 rehashidx 没有越界
assert(d->ht[0].size > (unsigned)d->rehashidx);
// 略过数组中为空的索引,找到下一个非空索引
while(d->ht[0].table[d->rehashidx] == NULL) d->rehashidx++;
// 指向该索引的链表表头节点
de = d->ht[0].table[d->rehashidx];
/* Move all the keys in this bucket from the old to the new hash HT */
// 将链表中的所有节点迁移到新哈希表
// T = O(1)
while(de) {
unsigned int h;
// 保存下个节点的指针
nextde = de->next;
/* Get the index in the new hash table */
// 计算新哈希表的哈希值,以及节点插入的索引位置
h = dictHashKey(d, de->key) & d->ht[1].sizemask;
// 插入节点到新哈希表
de->next = d->ht[1].table[h];
d->ht[1].table[h] = de;
// 更新计数器
d->ht[0].used--;
d->ht[1].used++;
// 继续处理下个节点
de = nextde;
}
// 将刚迁移完的哈希表索引的指针设为空
d->ht[0].table[d->rehashidx] = NULL;
// 更新 rehash 索引
d->rehashidx++;
}
return 1;
}
- 单步rehash定义:
/* This function performs just a step of rehashing, and only if there are
* no safe iterators bound to our hash table. When we have iterators in the
* middle of a rehashing we can't mess with the two hash tables otherwise
* some element can be missed or duplicated.
*
* 在字典不存在安全迭代器的情况下,对字典进行单步 rehash 。
*
* 字典有安全迭代器的情况下不能进行 rehash ,
* 因为两种不同的迭代和修改操作可能会弄乱字典。
*
* This function is called by common lookup or update operations in the
* dictionary so that the hash table automatically migrates from H1 to H2
* while it is actively used.
*
* 这个函数被多个通用的查找、更新操作调用,
* 它可以让字典在被使用的同时进行 rehash 。
*
* T = O(1)
*/
static void _dictRehashStep(dict *d) {
if (d->iterators == 0) dictRehash(d,1);
}
1.2 list
1.2.1 ziplist
明镜止水 - Redis中的底层数据结构(5)——压缩链表(ziplist)