杂记——极大似然估计的渐近正态性

结论

  假设 x 1 , ⋯   , x n x_1, \cdots, x_n x1,,xn是来自 f θ ( x ) f_{\theta}(x) fθ(x)的独立同分布样本, θ ^ M L E \hat{\theta}_{MLE} θ^MLE是参数 θ \theta θ的极大似然估计,那么 θ ^ M L E ∼ ˙ N ( θ , 1 n I ( θ ) ) (1) \hat{\theta}_{MLE}\dot{\sim}N(\theta, \frac{1}{nI(\theta)})\tag{1} θ^MLE˙N(θ,nI(θ)1)(1)其中, I ( θ ) I(\theta) I(θ) F i s h e r Fisher Fisher信息量。

证明

  首先来看单样本的情况,即有样本 x x x来自 f θ ( x ) f_{\theta}(x) fθ(x),则其似然函数为 l x ( θ ) = l o g ( f θ ( x ) ) (2) l_x(\theta)=log (f_{\theta}(x))\tag{2} lx(θ)=log(fθ(x))(2) θ \theta θ求导有 l ˙ x ( θ ) = ∂ ∂ θ l o g ( f θ ( x ) ) = f ˙ θ ( x ) f θ ( x ) (3) \dot{l}_x(\theta)=\frac{\partial }{\partial \theta}log(f_{\theta}(x))=\frac{\dot{f}_\theta(x)}{f_\theta(x)}\tag{3} l˙x(θ)=θlog(fθ(x))=fθ(x)f˙θ(x)(3) l ˙ x ( θ ) \dot{l}_x(\theta) l˙x(θ)被称作得分函数,它的期望为: E ( l ˙ x ( θ ) ) = ∫ χ f ˙ θ ( x ) f θ ( x ) f θ ( x ) d x = ∫ χ f ˙ θ ( x ) d x = ∫ χ ∂ ∂ x f θ ( x ) d x = ∂ ∂ x ∫ χ f θ ( x ) d x = ∂ ∂ x 1 = 0 (4) E(\dot{l}_x(\theta))=\int_{\chi}\frac{\dot{f}_\theta(x)}{f_\theta(x)}f_\theta(x)dx=\int_{\chi}\dot{f}_\theta(x)dx=\int_{\chi}\frac{\partial }{\partial x}f_\theta(x)dx=\frac{\partial }{\partial x}\int_{\chi}f_\theta(x)dx=\frac{\partial }{\partial x}1=0\tag{4} E(l˙x(θ))=χfθ(x)f˙θ(x)

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值