pandas之常用属性、方法和函数

一、简介

这里简单介绍了创建Series和DataFrame的几种方法,这里简单介绍了查找数据的几种方法,这里简单介绍了pandas汇总和计算描述统计的几种方法。本文继续介绍一些pandas常用的属性、方法和函数。

二、常用的属性、方法和函数

先创建一个DataFrame,作为例子演示用。

import pandas as pd

data = {
   'name': ['apolo', 'adm', 'bolon', 'ali', 'cathy', 'devn', 'elov'],
        'age': [18, 29, 32, 28, 34, 19, None],
        'sex': ['male', 'female', 'male', 'male', 'female', 'male', 'female'],
        'weight': [67, 78, 87, 59, 90, 101, 78],
        'height': [170, 189, 190, 179, None, 160, 185]}
df = pd.DataFrame(data, index=['a', 'b', 'c', 'd', 'e','f', 'g'])
df

输出

    name	age	    sex	weight	height
a	apolo	18.0	male	67	170.0
b	adm	    29.0	female	78	189.0
c	bolon	32.0	male	87	190.0
d	ali	    28.0	male	59	179.0
e	cathy	34.0	female	90	NaN
f	devn	19.0	male	101	160.0
g	elov	NaN	   female	78	185.0

2.1 shape

返回Series和DataFrame的大小。

DataFrame

df.shape

输出:是个元组类型,可继续用df.shape[0]获取第一个值,用df.shape[1]获取第二个值

(7, 5)

Series

df['age'].shape

输出:是个元组类型,可继续用df.shape[0]获取第一个值,但不能用df.shape[1]获取第二个值

(7,)

2.2 排序

pandas中的排序一般用的比较多的有三种:索引排序——sort_index(),值排序——sort_values,排名——rank(),接下来逐一介绍:

2.2.1 索引排序——sort_index()

索引排序,顾名思义就是将数据按照索引名进行排序,下面给出几个例子具体说明一下。

原DataFrame:

    name	age	    sex  weight height
a	apolo	18.0	male	67	170.0
i	adm	    29.0	female	78	189.0
c	bolon	32.0	male	87	190.0
d	ali	    28.0	male	59	179.0
h	cathy	34.0	female	90	NaN
f	devn	19.0	male	101	160.0
g	elov	NaN	  female	78	185.0

df.sort_index()

输出:默认是对行索引进行升序排列。可通过设置axis=1按照列索引名排序,此时会改变列的顺序,而不是行的顺序。可通过设置ascending=False进行降序排列。默认的是不改变原df的顺序,可通过设置inplace=True进行改变原df的顺序。Series也类似,只不过不能设置axis=1

    name	age	    sex	  weight height
a	apolo	18.0	male	67	170.0
c	bolon	32.0	male	87	190.0
d	ali	    28.0	male	59	179.0
f	devn	19.0	male	101	160.0
g	elov	NaN	    female	78	185.0
h	cathy	
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值