网络模型评价指标

这篇博客详细介绍了机器学习中常用的评估指标,包括准确率(AC)、杰卡德相似系数(JA)、Dice系数(DI)、特异性(SP)和灵敏度(SE),以及它们的计算公式。这些指标对于模型性能的评估至关重要,尤其在二分类问题中。通过理解这些指标,可以帮助优化模型并提升预测准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近看论文,又发现一个容易忘记的点,网络的评价指标,就见到一个一个的缩写:
AC、JA、DI、SP、SE,DC人是懵的,在这里写上一个笔记,方便自己查看!

公式

AC

accuracy 又称准确率,预测中正确的部分占总预测的比重
A C = ( T P + T N ) / ( T P + T N + F P + F N ) AC = (TP+TN)/(TP+TN+FP+FN) AC=(TP+TN)/(TP+TN+FP+FN)

JA

jacarrd score, 又叫做杰卡德相似系数,指预测值与ground truth的交集比上并集的值
J A = T P / ( T P + F P + F N ) JA = TP/(TP+FP+FN) JA=TP/(TP+FP+FN)

DI

dice (DI)与JA之间的关系

J A = D I / ( 2 − D C ) JA = DI / (2-DC) JA=DI/(2DC)
D I = 2 ∗ J A / ( 1 + J A ) DI = 2*JA / (1+JA) DI=2JA/(1+JA)
JA代表Jaccard或iou,DC代表Dice。
所以,
D I = 2 ∗ T P / ( 2 ∗ T P + F P + F N ) DI = 2 *TP / (2*TP + FP+FN) DI=2TP/(2TP+FP+FN)
dice = f1

SP

精准度 s p e c i f i c i t y = T P / ( T P + F P ) specificity= TP / (TP+FP) specificity=TP/(TP+FP)

SE

敏感度 s e n s i t i v i t y = T P / ( T P + F N ) sensitivity = TP / (TP+FN) sensitivity=TP/TP+FN

miou = Jaccard

### 回归神经网络模型评价指标 对于回归神经网络模型而言,多个不同的评价指标被广泛应用于衡量其性能优劣。均方误差(Mean Squared Error, MSE)是最常用的回归评估指标之一[^4]。该度量通过计算预测值与实际观测值之间的差异平方并取平均值得出;较低的MSE意味着更高的预测准确性。 除了MSE之外,还有其他重要的评价标准: - **均方根误差 (Root Mean Square Error, RMSE)**:RMSE 是 MSE 的平方根形式,有助于更直观地理解误差大小,因为它的单位与目标变量相同。 - **平均绝对误差 (Mean Absolute Error, MAE)**:MAE 表示的是预测值和真实值之间绝对差额的期望值,相比起 MSE 对异常点更加鲁棒。 - **R²得分 (Coefficient of Determination)**:这个统计量反映了因变量的变化中有多少比例能够由自变量解释清楚,在理想情况下 R² 接近于 1,则说明模型拟合良好。 为了确保模型具有良好的泛化能力而不是仅仅针对训练集进行了过度优化,通常还会采用诸如交叉验证这样的技术来测试模型在未见过的数据上的表现情况[^3]。 ```python from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score import numpy as np def evaluate_regression_model(y_true, y_pred): mse = mean_squared_error(y_true, y_pred) rmse = np.sqrt(mse) mae = mean_absolute_error(y_true, y_pred) r2 = r2_score(y_true, y_pred) results = { 'mse': mse, 'rmse': rmse, 'mae': mae, 'r2': r2 } return results ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值