网络模型评价指标

这篇博客详细介绍了机器学习中常用的评估指标,包括准确率(AC)、杰卡德相似系数(JA)、Dice系数(DI)、特异性(SP)和灵敏度(SE),以及它们的计算公式。这些指标对于模型性能的评估至关重要,尤其在二分类问题中。通过理解这些指标,可以帮助优化模型并提升预测准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近看论文,又发现一个容易忘记的点,网络的评价指标,就见到一个一个的缩写:
AC、JA、DI、SP、SE,DC人是懵的,在这里写上一个笔记,方便自己查看!

公式

AC

accuracy 又称准确率,预测中正确的部分占总预测的比重
A C = ( T P + T N ) / ( T P + T N + F P + F N ) AC = (TP+TN)/(TP+TN+FP+FN) AC=(TP+TN)/(TP+TN+FP+FN)

JA

jacarrd score, 又叫做杰卡德相似系数,指预测值与ground truth的交集比上并集的值
J A = T P / ( T P + F P + F N ) JA = TP/(TP+FP+FN) JA=TP/(TP+FP+FN)

DI

dice (DI)与JA之间的关系

J A = D I / ( 2 − D C ) JA = DI / (2-DC) JA=DI/(2DC)
D I = 2 ∗ J A / ( 1 + J A ) DI = 2*JA / (1+JA) DI=2JA/(1+JA)
JA代表Jaccard或iou,DC代表Dice。
所以,
D I = 2 ∗ T P / ( 2 ∗ T P + F P + F N ) DI = 2 *TP / (2*TP + FP+FN) DI=2TP/(2TP+FP+FN)
dice = f1

SP

精准度 s p e c i f i c i t y = T P / ( T P + F P ) specificity= TP / (TP+FP) specificity=TP/(TP+FP)

SE

敏感度 s e n s i t i v i t y = T P / ( T P + F N ) sensitivity = TP / (TP+FN) sensitivity=TP/TP+FN

miou = Jaccard

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值