整数划


描述

将正整数n表示成一系列正整数之和:n=n1+n2+…+nk,

其中n1≥n2≥…≥nk≥1,k≥1。

正整数n的这种表示称为正整数n的划分。求正整数n的不

同划分个数。

例如正整数6有如下11种不同的划分:

6;

5+1;

4+2,4+1+1;

3+3,3+2+1,3+1+1+1;

2+2+2,2+2+1+1,2+1+1+1+1;

1+1+1+1+1+1。

 

输入

第一行是测试数据的数目M(1<=M<=10)。以下每行均包含一个整数n(1<=n<=10)。

输出

输出每组测试数据有多少种分法。

样例输入

1

6

样例输出

11


所谓整数划分,是指把一个正整数n写成为

其中,
 Mi 
为正整数,并且
 1<=Mi<=n 
 {M1,M2,M3...,Mi} 
为n的一个划分。
如果
   {M1,M2,M3...,Mi} 
中的最大值不超过m,即
 Max(m1,m2,...,mi)<=m 
,则称它属于n的一个m划分。

分析

这里我们记n的m划分的个数为
 f(n,m) 
例如,当n=4时,有5个划分,即
 {4} 
 {3,1} 
 {2,2} 
 {2,1,1} 
 {1,1,1,1} 
注意:
 4=1+3 
 4=3+1 
被认为是同一个划分。
根据n和m的关系,考虑一下几种情况:
(一)当
 n=1 
时,无论m的值为多少
 (m>0) 
,只有一种划分,即
 {1} 
(二)当
 m=1 
时,无论n的值为多少,只有一种划分,即n个1,
 {1,1...1} 
(三)当
 n=m 
时,根据划分中是否包含n,可以分为以下两种情况:
(1)划分中包含n的情况,只有一个,即
 {n} 
(2)划分中不包含n的情况,这时划分中最大的数字也一定比n小,即n的所有
 (n-1) 
划分。
因此
 f(n,n)=1+f(n,n-1) 
(四)当
 n<m 
时,由于划分中不可能出现负数,因此就相当于
 f(n,n) 
(五)当
 n>m 
时,根据划分中是否包含最大值m,可以分为以下两种情况:
(1)划分中包含m的情况,即
 {m,{x1,x1...,xi}} 
,其中
 {x1,x2,...,xi} 
的和为n-m,因此这种情况下为
 f(n-m,m) 
(2)划分中不包含m的情况,则划分中所有值都比m小,即n的
 (m-1) 
划分,个数为
 f(n,m-1) 
因此
 f(n,m)=f(n-m,m)+f(n,m-1) 
综上所述:


/函数:q(int n,int m)
//作用:用来得到正整数n,最大加数不大于m的划分个数
public static int q(int n,int m){
    //若正整数或最大加数小于1,则返回0
    if(n<1||m<1) return 0;
    //若正整数或最大加数等于1,则划分个数为1(n个1相加)
    if(n==1||m==1) return 1;
    //若最大加数实际上不能大于正整数n,若大于则划分个数等于最大加数为n的划分个数
    if(n<m) return q(n,n);
    //若正整数等于最大加数,则划分个数等于
    if (n==m) return 1+q(n,n-1);
    return q(n,m-1)+q(n-m,m);
} 



public static void main(String[] args){	
		Scanner sc=new Scanner(System.in);
		int a=sc.nextInt();
		int[] i=new int [a];
		for(int d=0;d<a;d++){
			int b=sc.nextInt();
			int c=b;
			i[d]=num(b,c);
		}
		for(int d=0;d<a;d++){
			System.out.println(i[d]);
		}
	}
	public static int num(int n,int m){
		if(n<1||m<1){
			return 0;
		}
		if(n==1||m==1){
			return 1;
		}
		if(n<m){
			return num(n,n);
		}
		if(n==m){
			return num(n,m-1)+1;
		}
		return num(n,m-1)+num(n-m,m);
	}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值