13_hive四-hive调优

大数据分析利器之hive

在这里插入图片描述

一、hive表的文件存储格式

  • Hive支持的存储数的格式主要有:
    • TEXTFILE(行式存储) 、
    • SEQUENCEFILE(行式存储)、
    • ORC(列式存储)、
    • PARQUET(列式存储)。
1.1、列式存储和行式存储

在这里插入图片描述

上图左边为逻辑表,右边第一个为行式存储,第二个为列式存储。

行存储的特点: 查询满足条件的一整行数据的时候,列存储则需要去每个聚集的字段找到对应的每个列的值,行存储只需要找到其中一个值,其余的值都在相邻地方,所以此时行存储查询的速度更快。select *

列存储的特点: 因为每个字段的数据聚集存储,在查询只需要少数几个字段的时候,能大大减少读取的数据量;每个字段的数据类型一定是相同的,列式存储可以针对性的设计更好的设计压缩算法。 select 某些字段效率更高

TEXTFILE 和 SEQUENCEFILE:的存储格式都是基于行存储的;

ORC 和 PARQUET:是基于列式存储的。

1.2 、TEXTFILE格式

默认格式,数据不做压缩,磁盘开销大,数据解析开销大。

可结合Gzip、Bzip2使用(系统自动检查,执行查询时自动解压),但使用这种方式,hive不会对数据进行切分,从而无法对数据进行并行操作。

1.3 、ORC格式

Orc (Optimized Row Columnar)是hive 0.11版里引入的新的存储格式。

可以看到每个Orc文件由1个或多个stripe组成,每个stripe250MB大小,这个Stripe实际相当于RowGroup概念,不过大小由4MB->250MB,这样能提升顺序读的吞吐率。每个Stripe里有三部分组成,分别是Index Data,Row Data,Stripe Footer:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-vMNj5EN1-1572880797233)(hive_day04%E8%AF%BE%E7%A8%8B%E8%AE%BE%E8%AE%A1.assets/clip_image003.png)]

一个orc文件可以分为若干个Stripe

一个stripe可以分为三个部分

​ indexData:某些列的索引数据

​ rowData : 真正的数据存储

​ StripFooter:stripe的元数据信息

1)Index Data:一个轻量级的index,默认是每隔1W行做一个索引。这里做的索引只是记录某行的各字段在Row Data中的offset。

​ 2)Row Data:存的是具体的数据,先取部分行,然后对这些行按列进行存储。对每个列进行了编码,分成多个Stream来存储。

​ 3)Stripe Footer:存的是各个stripe的元数据信息

每个文件有一个File Footer,这里面存的是每个Stripe的行数,每个Column的数据类型信息等;

每个文件的尾部是一个PostScript,这里面记录了整个文件的压缩类型以及FileFooter的长度信息等。

在读取文件时,会seek到文件尾部读PostScript,从里面解析到File Footer长度,再读FileFooter,从里面解析到各个Stripe信息,再读各个Stripe,即从后往前读。

1.4 、PARQUET格式

Parquet是面向分析型业务的列式存储格式,由Twitter和Cloudera合作开发,2015年5月从Apache的孵化器里毕业成为Apache顶级项目。

Parquet文件是以二进制方式存储的,所以是不可以直接读取的,文件中包括该文件的数据和元数据,因此Parquet格式文件是自解析的

通常情况下,在存储Parquet数据的时候会按照Block大小设置行组的大小,由于一般情况下每一个Mapper任务处理数据的最小单位是一个Block,这样可以把每一个行组由一个Mapper任务处理,增大任务执行并行度。Parquet文件的格式如下图所示。
在这里插入图片描述

上图展示了一个Parquet文件的内容,一个文件中可以存储多个行组,文件的首位都是该文件的Magic Code,用于校验它是否是一个Parquet文件,Footer length记录了文件元数据的大小,通过该值和文件长度可以计算出元数据的偏移量,文件的元数据中包括每一个行组的元数据信息和该文件存储数据的Schema信息。除了文件中每一个行组的元数据,每一页的开始都会存储该页的元数据,在Parquet中,有三种类型的页:数据页、字典页和索引页。数据页用于存储当前行组中该列的值,字典页存储该列值的编码字典,每一个列块中最多包含一个字典页,索引页用来存储当前行组下该列的索引,目前Parquet中还不支持索引页。

1.5、 主流文件存储格式对比实验

从存储文件的压缩比查询速度两个角度对比。

存储文件的压缩比测试:

测试数据 参见log.data

1.5.1、TextFile

(1)创建表,存储数据格式为TEXTFILE

use myhive;
create table log_text (
track_time string,
url string,
session_id string,
referer string,
ip string,
end_user_id string,
city_id string
)ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS TEXTFILE ;

(2)向表中加载数据

load data local inpath '/kkb/install/hivedatas/log.data' into table log_text ;

(3)查看表中数据大小,大小为18.1M

dfs -du -h /user/hive/warehouse/myhive.db/log_text;
18.1 M  /user/hive/warehouse/log_text/log.data
1.5.2、ORC

(1)创建表,存储数据格式为ORC

create table log_orc(
track_time string,
url string,
session_id string,
referer string,
ip string,
end_user_id string,
city_id string)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS orc ;

(2)向表中加载数据

insert into table log_orc select * from log_text ;

(3)查看表中数据大小

dfs -du -h /user/hive/warehouse/myhive.db/log_orc;

2.8 M  /user/hive/warehouse/log_orc/123456_0

orc这种存储格式,默认使用了zlib压缩方式来对数据进行压缩,所以数据会变成了2.8M,非常小

1.5.3、Parquet

(1)创建表,存储数据格式为parquet

create table log_parquet(
track_time string,
url string,
session_id string,
referer string,
ip string,
end_user_id string,
city_id string)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS PARQUET ;  

(2)向表中加载数据

insert into table log_parquet select * from log_text ;

(3)查看表中数据大小

dfs -du -h /user/hive/warehouse/myhive.db/log_parquet;

13.1 M  /user/hive/warehouse/log_parquet/123456_0

存储文件的压缩比总结:

ORC >  Parquet >  textFile

存储文件的查询速度测试:

1)TextFile
hive (default)> select count(*) from log_text;
_c0
100000
Time taken: 21.54 seconds, Fetched: 1 row(s)  

2)ORC
hive (default)> select count(*) from log_orc;
_c0
100000
Time taken: 20.867 seconds, Fetched: 1 row(s)  

3)Parquet
hive (default)> select count(*) from log_parquet; 
_c0
100000
Time taken: 22.922 seconds, Fetched: 1 row(s)

存储文件的查询速度总结:
ORC > TextFile > Parquet

二、存储和压缩结合

官网:https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC

ORC存储方式的压缩:

KeyDefaultNotes
orc.compressZLIBhigh level compression (one of NONE, ZLIB, SNAPPY)
orc.compress.size262,144number of bytes in each compression chunk
orc.stripe.size67,108,864number of bytes in each stripe
orc.row.index.stride10,000number of rows between index entries (must be >= 1000)
orc.create.indextruewhether to create row indexes
orc.bloom.filter.columns“”comma separated list of column names for which bloom filter should be created
orc.bloom.filter.fpp0.05false positive probability for bloom filter (must >0.0 and <1.0)
2.1、创建一个非压缩的的ORC存储方式

(1)建表语句

create table log_orc_none(
track_time string,
url string,
session_id string,
referer string,
ip string,
end_user_id string,
city_id string
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS orc 
tblproperties ("orc.compress"="NONE");

(2)插入数据

insert into table log_orc_none select * from log_text ;

(3)查看插入后数据

dfs -du -h /user/hive/warehouse/myhive.db/log_orc_none;

7.7 M  /user/hive/warehouse/log_orc_none/123456_0
2.2、创建一个SNAPPY压缩的ORC存储方式

(1)建表语句

create table log_orc_snappy(
track_time string,
url string,
session_id string,
referer string,
ip string,
end_user_id string,
city_id string
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS orc tblproperties ("orc.compress"="SNAPPY");

(2)插入数据

insert into table log_orc_snappy select * from log_text ;

(3)查看插入后数据

dfs -du -h /user/hive/warehouse/myhive.db/log_orc_snappy ;
3.8 M  /user/hive/warehouse/log_orc_snappy/123456_0

3)上一节中默认创建的ORC存储方式,导入数据后的大小为

2.8 M  /user/hive/warehouse/log_orc/123456_0

比Snappy压缩的还小。原因是orc存储文件默认采用ZLIB压缩。比snappy压缩的小。

4)存储方式和压缩总结:

​ 在实际的项目开发当中,hive表的数据存储格式一般选择:orc或parquet。压缩方式一般选择snappy。

三、 hive的SerDe(序列与反序列化)

3.1 hive的SerDe是什么

​ Serde是 Serializer/Deserializer的简写。hive使用Serde进行行对象的序列与反序列化。最后实现把文件内容映射到 hive 表中的字段数据类型。

​ 为了更好的阐述使用 SerDe 的场景,我们需要了解一下 Hive 是如何读数据的(类似于 HDFS 中数据的读写操作):

HDFS files –> InputFileFormat –> <key, value> –> Deserializer –> Row object

Row object –> Serializer –> <key, value> –> OutputFileFormat –> HDFS files
3.2、 hive的SerDe 类型
  • Hive 中内置org.apache.hadoop.hive.serde2 库,内部封装了很多不同的SerDe类型
  • hive创建表时, 通过自定义的SerDe或使用Hive内置的SerDe类型指定数据的序列化和反序列化方式
CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name 
[(col_name data_type [COMMENT col_comment], ...)] [COMMENT table_comment] [PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)] 
[CLUSTERED BY (col_name, col_name, ...) 
[SORTED BY (col_name [ASC|DESC], ...)] INTO num_buckets BUCKETS] 
[ROW FORMAT row_format] 
[STORED AS file_format] 
[LOCATION hdfs_path]
  • 如上创建表语句, 使用==row format 参数说明SerDe的类型。==

  • 你可以创建表时使用用户自定义的Serde或者native Serde如果 ROW FORMAT没有指定或者指定了 ROW FORMAT DELIMITED就会使用native Serde

  • Hive SerDes:

    • Avro (Hive 0.9.1 and later)
    • ORC (Hive 0.11 and later)
    • RegEx
    • Thrift
    • Parquet (Hive 0.13 and later)
    • CSV (Hive 0.14 and later)
    • MultiDelimitSerDe
3.3、企业实战
3.3.1、 通过MultiDelimitSerDe 解决多字符分割场景
  • 1、创建表
use myhive;

create  table t1 (id String, name string)
row format serde 'org.apache.hadoop.hive.contrib.serde2.MultiDelimitSerDe'
WITH SERDEPROPERTIES ("field.delim"="##");

  • 2、准备数据 t1.txt
cd /kkb/install/hivedatas
vim t1.txt


1##xiaoming
2##xiaowang
3##xiaozhang
  • 3、加载数据
load data local inpath '/kkb/install/hivedatas/t1.txt' into table t1;
  • 4、查询数据
0: jdbc:hive2://node1:10000> select * from t1;
+--------+------------+--+
| t1.id  |  t1.name   |
+--------+------------+--+
| 1      | xiaoming   |
| 2      | xiaowang   |
| 3      | xiaozhang  |
+--------+------------+--+
3.3.2 通过RegexSerDe 解决多字符分割场景(正则)
  • 1、创建表
create  table t2(id int, name string)
row format serde 'org.apache.hadoop.hive.serde2.RegexSerDe' 
WITH SERDEPROPERTIES ("input.regex" = "^(.*)\\#\\#(.*)$");
  • 2、准备数据 t1.txt
1##xiaoming
2##xiaowang
3##xiaozhang
  • 3、加载数据
load data local inpath '/kkb/install/hivedatas/t1.txt' into table t2;
  • 4、查询数据
0: jdbc:hive2://node1:10000> select * from t2;
+--------+------------+--+
| t2.id  |  t2.name   |
+--------+------------+--+
| 1      | xiaoming   |
| 2      | xiaowang   |
| 3      | xiaozhang  |
+--------+------------+--+

四、hive的企业级调优

4.1、Fetch抓取:哪些hql语句不用执行MR程序
  • Fetch抓取是指,Hive中对某些情况的查询可以不必使用MapReduce计算

    • 例如:select * from score;
    • 在这种情况下,Hive可以简单地读取employee对应的存储目录下的文件,然后输出查询结果到控制台
  • hive-default.xml.template文件中 hive.fetch.task.conversion默认是more,老版本hive默认是minimal,该属性修改为more以后,在全局查找、字段查找、limit查找等都不走mapreduce

  • 案例实操

    • 把 hive.fetch.task.conversion设置成**none**,然后执行查询语句,都会执行mapreduce程序
    set hive.fetch.task.conversion=none;
    select * from score;
    select s_id from score;
    select s_id from score limit 3;
    
    • 把hive.fetch.task.conversion设置成==more==,然后执行查询语句,如下查询方式都不会执行mapreduce程序。
    set hive.fetch.task.conversion=more;
    select * from score;
    select s_id from score;
    select s_id from score limit 3;
    
4.2、本地模式:如果数据量小,只启动一个Maptask
  • 在Hive客户端测试时,默认情况下是启用hadoop的job模式,把任务提交到集群中运行,这样会导致计算非常缓慢;

  • Hive可以通过本地模式在单台机器上处理任务。对于小数据集,执行时间可以明显被缩短。

  • 案例实操

    --开启本地模式,并执行查询语句
    set hive.exec.mode.local.auto=true;  //开启本地mr
    
    --设置local mr的最大输入数据量,当输入数据量小于这个值时采用local  mr的方式,
    --默认为134217728,即128M
    set hive.exec.mode.local.auto.inputbytes.max=50000000;
    
    --设置local mr的最大输入文件个数,当输入文件个数小于这个值时采用local mr的方式,
    --默认为4
    set hive.exec.mode.local.auto.input.files.max=5;
    
    
    --执行查询的sql语句
    select * from student cluster by s_id;
    
--关闭本地运行模式
set hive.exec.mode.local.auto=false;
select * from student cluster by s_id;
4.3、表的优化
4.3.1 小表、大表 join
  • key相对分散 且 数据量小的表放在join的左边,这样可以有效减少内存溢出错误发生的几率;再进一步,可以使用map join让小的维度表(1000条以下的记录条数)先进内存。在map端完成reduce。

    select  count(distinct s_id)  from score;
    
    select count(s_id) from score group by s_id; 在map端进行聚合,效率更高
    
  • 实际测试发现:新版的hive已经对小表 join 大表和大表 join 小表进行了优化。小表放在左边和右边已经没有明显区别

  • 多个表关联时,最好分拆成小段,避免大sql(无法控制中间Job)

4.3.2 大表 join 大表
  • 1.空 key 过滤

    • 有时join超时是因为某些key对应的数据太多,而相同key对应的数据都会发送到相同的reducer上,从而导致内存不够。

    • 此时我们应该仔细分析这些异常的key,很多情况下,这些key对应的数据是异常数据,我们需要在SQL语句中进行过滤

    • 测试环境准备:

      use myhive;
      
      create table ori(id bigint, time bigint, uid string, keyword string, url_rank int, click_num int, click_url string) 
      row format delimited fields terminated by '\t';
      
      create table nullidtable(id bigint, time bigint, uid string, keyword string, url_rank int, click_num int, click_url string)
      row format delimited fields terminated by '\t';
      
      create table jointable(id bigint, time bigint, uid string, keyword string, url_rank int, click_num int, click_url string) 
      row format delimited fields terminated by '\t';
      
      load data local inpath '/kkb/install/hivedatas/hive_big_table/*' into table ori; 
      load data local inpath '/kkb/install/hivedatas/hive_have_null_id/*' into table nullidtable;
      

      过滤空key与不过滤空key的结果比较

      不过滤:
      INSERT OVERWRITE TABLE jointable
      SELECT a.* FROM nullidtable a JOIN ori b ON a.id = b.id;
      结果:
      No rows affected (152.135 seconds)
      
      过滤:
      INSERT OVERWRITE TABLE jointable
      SELECT a.* FROM (SELECT * FROM nullidtable WHERE id IS NOT NULL ) a 
      JOIN ori b ON a.id = b.id;
      
      结果:
      No rows affected (141.585 seconds)
      
  • 2、空 key 转换

    • 有时虽然某个 key 为空对应的数据很多,但是相应的数据不是异常数据,必须要包含在 join 的结果中,此时我们可以表 a 中 key 为空的字段赋一个随机的值,使得数据随机均匀地分不到不同的 reducer 上。

      不随机分布:

      set hive.exec.reducers.bytes.per.reducer=32123456;
      set mapreduce.job.reduces=7;
      
      INSERT OVERWRITE TABLE jointable
      SELECT a.*
      FROM nullidtable a
      LEFT JOIN ori b ON CASE WHEN a.id IS NULL THEN 'hive' ELSE a.id END = b.id;
      No rows affected (41.668 seconds)  
      
      

      结果:这样的后果就是所有为null值的id全部都变成了相同的字符串,及其容易造成数据的倾斜(所有的key相同,相同key的数据会到同一个reduce当中去)

      为了解决这种情况,我们可以通过hive的rand函数,随记的给每一个为空的id赋上一个随机值,这样就不会造成数据倾斜

    ​ 随机分布:

    set hive.exec.reducers.bytes.per.reducer=32123456;
    set mapreduce.job.reduces=7;
    
    INSERT OVERWRITE TABLE jointable
    SELECT a.*
    FROM nullidtable a
    LEFT JOIN ori b ON CASE WHEN a.id IS NULL THEN concat('hive', rand()) ELSE a.id END = b.id;
    
    No rows affected (42.594 seconds)              
    

3、大表join小表与小表join大表实测

需求:测试大表JOIN小表和小表JOIN大表效率 (新的版本当中已经没有区别了,旧的版本当中需要使用小表)

(1)建大表、小表和JOIN后表的语句

create table bigtable(id bigint, time bigint, uid string, keyword string, url_rank int, click_num int, click_url string) row format delimited fields terminated by '\t';

create table smalltable(id bigint, time bigint, uid string, keyword string, url_rank int, click_num int, click_url string) row format delimited fields terminated by '\t';

create table jointable2(id bigint, time bigint, uid string, keyword string, url_rank int, click_num int, click_url string) row format delimited fields terminated by '\t';

(2)分别向大表和小表中导入数据

hive (default)> load data local inpath '/kkb/install/hivedatas/big_data' into table bigtable;

hive (default)>load data local inpath '/kkb/install/hivedatas/small_data' into table smalltable;
4.3.3 map join
  • 如果不指定MapJoin 或者不符合 MapJoin的条件,那么Hive解析器会将Join操作转换成Common Join,即:在Reduce阶段完成join。容易发生数据倾斜。可以用 MapJoin 把小表全部加载到内存在map端进行join,避免reducer处理。

  • 1、开启MapJoin参数设置

     --默认为true
    set hive.auto.convert.join = true;
    
  • 2、大表小表的阈值设置(默认25M一下认为是小表)

set hive.mapjoin.smalltable.filesize=26214400;
  • 3、MapJoin工作机制

在这里插入图片描述
首先是Task A,它是一个Local Task(在客户端本地执行的Task),负责扫描小表b的数据,将其转换成一个HashTable的数据结构,并写入本地的文件中,之后将该文件加载到DistributeCache中。

接下来是Task B,该任务是一个没有Reduce的MR,启动MapTasks扫描大表a,在Map阶段,根据a的每一条记录去和DistributeCache中b表对应的HashTable关联,并直接输出结果。

由于MapJoin没有Reduce,所以由Map直接输出结果文件,有多少个Map Task,就有多少个结果文件。

案例实操:

(1)开启Mapjoin功能

set hive.auto.convert.join = true; 默认为true

(2)执行小表JOIN大表语句

INSERT OVERWRITE TABLE jointable2
SELECT b.id, b.time, b.uid, b.keyword, b.url_rank, b.click_num, b.click_url
FROM smalltable s
JOIN bigtable  b
ON s.id = b.id;

Time taken: 31.814 seconds

(3)执行大表JOIN小表语句

INSERT OVERWRITE TABLE jointable2
SELECT b.id, b.time, b.uid, b.keyword, b.url_rank, b.click_num, b.click_url
FROM bigtable  b
JOIN smalltable  s
ON s.id = b.id;

Time taken: 28.46 seconds
4.3.4 group By
  • 默认情况下,Map阶段同一Key数据分发给一个reduce,当一个key数据过大时就倾斜了。

  • 并不是所有的聚合操作都需要在Reduce端完成,很多聚合操作都可以先在Map端进行部分聚合,最后在Reduce端得出最终结果。

  • 开启Map端聚合参数设置

    --是否在Map端进行聚合,默认为True
    set hive.map.aggr = true;
    --在Map端进行聚合操作的条目数目
    set hive.groupby.mapaggr.checkinterval = 100000;
    --有数据倾斜的时候进行负载均衡(默认是false)
    set hive.groupby.skewindata = true;
    
    当选项设定为 true,生成的查询计划会有两个MR Job。第一个MR Job中,Map的输出结果会随机分布到Reduce中,每个Reduce做部分聚合操作,并输出结果,这样处理的结果是相同的Group By Key有可能被分发到不同的Reduce中,从而达到负载均衡的目的;第二个MR Job再根据预处理的数据结果按照Group By Key分布到Reduce中(这个过程可以保证相同的Group By Key被分布到同一个Reduce中),最后完成最终的聚合操作。
    
4.3.5、count(distinct)
  • 数据量小的时候无所谓,数据量大的情况下,由于count distinct 操作需要用一个reduce Task来完成,这一个Reduce需要处理的数据量太大,就会导致整个Job很难完成,一般count distinct使用先group by 再count的方式替换

    环境准备:

    create table bigtable(id bigint, time bigint, uid string, keyword string, url_rank int, click_num int, click_url string) row format delimited fields terminated by '\t';
    
    load data local inpath '/kkb/install/hivedatas/data/100万条大表数据(id除以10取整)/bigtable' into table bigtable;
    
    
    --每个reduce任务处理的数据量 默认256000000(256M)
     set hive.exec.reducers.bytes.per.reducer=32123456;
     
     select  count(distinct ip )  from log_text;
     
     转换成
     set hive.exec.reducers.bytes.per.reducer=32123456;
     select count(ip) from (select ip from log_text group by ip) t;
     
     
     虽然会多用一个Job来完成,但在数据量大的情况下,这个绝对是值得的。
    
4.4.6、 笛卡尔积
  • 尽量避免笛卡尔积,即避免join的时候不加on条件,或者无效的on条件
  • Hive只能使用1个reducer来完成笛卡尔积。
4.4、使用分区剪裁、列剪裁
  • 尽可能早地过滤掉尽可能多的数据量,避免大量数据流入外层SQL。
  • 列剪裁
    • 只获取需要的列的数据,减少数据输入。
  • 分区裁剪
    • 分区在hive实质上是目录,分区裁剪可以方便直接地过滤掉大部分数据。
    • 尽量使用分区过滤,少用select *

​ 环境准备:

create table ori(id bigint, time bigint, uid string, keyword string, url_rank int, click_num int, click_url string) row format delimited fields terminated by '\t';

create table bigtable(id bigint, time bigint, uid string, keyword string, url_rank int, click_num int, click_url string) row format delimited fields terminated by '\t';

load data local inpath '/home/admin/softwares/data/加递增id的原始数据/ori' into table ori;

load data local inpath '/home/admin/softwares/data/100万条大表数据(id除以10取整)/bigtable' into table bigtable;

先关联再Where:

SELECT a.id
FROM bigtable a
LEFT JOIN ori b ON a.id = b.id
WHERE b.id <= 10;

正确的写法是写在ON后面:先Where再关联

SELECT a.id
FROM ori a
LEFT JOIN bigtable b ON (a.id <= 10 AND a.id = b.id);

或者直接写成子查询:

SELECT a.id
FROM bigtable a
RIGHT JOIN (SELECT id
FROM ori
WHERE id <= 10
) b ON a.id = b.id;

4.5、并行执行
  • 把一个sql语句中没有相互依赖的阶段并行去运行。提高集群资源利用率
--开启并行执行
set hive.exec.parallel=true;
--同一个sql允许最大并行度,默认为8。
set hive.exec.parallel.thread.number=16;
4.6、严格模式
  • Hive提供了一个严格模式,可以防止用户执行那些可能意想不到的不好的影响的查询。

  • 通过设置属性hive.mapred.mode值为默认是非严格模式nonstrict 。开启严格模式需要修改hive.mapred.mode值为strict,开启严格模式可以禁止3种类型的查询。

    --设置非严格模式(默认)
    set hive.mapred.mode=nonstrict;
    
    --设置严格模式
    set hive.mapred.mode=strict;
    

严格模式:

where语句

order by语句的查询,要求必须使用limit

限制笛卡尔积的查询

  • (1)对于分区表,除非where语句中含有分区字段过滤条件来限制范围,否则不允许执行

    --设置严格模式下 执行sql语句报错; 非严格模式下是可以的
    select * from order_partition;
    
    异常信息:Error: Error while compiling statement: FAILED: SemanticException [Error 10041]: No partition predicate found for Alias "order_partition" Table "order_partition" 
    
  • (2)对于使用了order by语句的查询,要求必须使用limit语句

    --设置严格模式下 执行sql语句报错; 非严格模式下是可以的
    select * from order_partition where month='2019-03' order by order_price; 
    
    异常信息:Error: Error while compiling statement: FAILED: SemanticException 1:61 In strict mode, if ORDER BY is specified, LIMIT must also be specified. Error encountered near token 'order_price'
    
  • (3)限制笛卡尔积的查询

    • 严格模式下,避免出现笛卡尔积的查询
4.7、JVM重用
  • JVM重用是Hadoop调优参数的内容,其对Hive的性能具有非常大的影响,特别是对于很难避免小文件的场景或task特别多的场景,这类场景大多数执行时间都很短。

    Hadoop的默认配置通常是使用派生JVM来执行map和Reduce任务的。这时JVM的启动过程可能会造成相当大的开销,尤其是执行的job包含有成百上千task任务的情况。

    JVM重用可以使得JVM实例在同一个job中重新使用N次。N的值可以在Hadoop的mapred-site.xml文件中进行配置。通常在10-20之间,具体多少需要根据具体业务场景测试得出。

    <property>
      <name>mapreduce.job.jvm.numtasks</name>
      <value>10</value>
      <description>How many tasks to run per jvm. If set to -1, there is
      no limit. 
      </description>
    </property>
    
    

    我们也可以在hive当中通过

     set  mapred.job.reuse.jvm.num.tasks=10;
    

    这个设置来设置我们的jvm重用

    这个功能的缺点是,开启JVM重用将一直占用使用到的task插槽,以便进行重用,直到任务完成后才能释放。如果某个“不平衡的”job中有某几个reduce task执行的时间要比其他Reduce task消耗的时间多的多的话,那么保留的插槽就会一直空闲着却无法被其他的job使用,直到所有的task都结束了才会释放。

4.8、推测执行
  • 在分布式集群环境下,因为程序Bug(包括Hadoop本身的bug),负载不均衡或者资源分布不均等原因,会造成同一个作业的多个任务之间运行速度不一致,有些任务的运行速度可能明显慢于其他任务(比如一个作业的某个任务进度只有50%,而其他所有任务已经运行完毕),则这些任务会拖慢作业的整体执行进度。

  • 为了避免这种情况发生,Hadoop采用了推测执行(Speculative Execution)机制,它根据一定的法则推测出“拖后腿”的任务,并为这样的任务启动一个备份任务,让该任务与原始任务同时处理同一份数据,并最终选用最先成功运行完成任务的计算结果作为最终结果。

    设置开启推测执行参数:Hadoop的mapred-site.xml文件中进行配置

<property>
  <name>mapreduce.map.speculative</name>
  <value>true</value>
  <description>If true, then multiple instances of some map tasks 
               may be executed in parallel.</description>
</property>

<property>
  <name>mapreduce.reduce.speculative</name>
  <value>true</value>
  <description>If true, then multiple instances of some reduce tasks 
               may be executed in parallel.</description>
</property>

不过hive本身也提供了配置项来控制reduce-side的推测执行:

  <property>
    <name>hive.mapred.reduce.tasks.speculative.execution</name>
    <value>true</value>
    <description>Whether speculative execution for reducers should be turned on. </description>
  </property>

关于调优这些推测执行变量,还很难给一个具体的建议。

如果用户对于运行时的偏差非常敏感的话,那么可以将这些功能关闭掉。

如果用户因为输入数据量很大而需要执行长时间的map或者Reduce task的话,那么启动推测执行造成的浪费是非常巨大大。

4.9、压缩

​ 参见数据的压缩

  • Hive表中间数据压缩

    #设置为true为激活中间数据压缩功能,默认是false,没有开启
    set hive.exec.compress.intermediate=true;
    #设置中间数据的压缩算法
    set mapred.map.output.compression.codec= org.apache.hadoop.io.compress.SnappyCodec;
    
    
  • Hive表最终输出结果压缩

    set hive.exec.compress.output=true;
    set mapred.output.compression.codec= 
    org.apache.hadoop.io.compress.SnappyCodec;
    
4.10、使用EXPLAIN(执行计划)

查看hql执行计划

4.11、数据倾斜
4.11.1 合理设置Map数
    1. 通常情况下,作业会通过input的目录产生一个或者多个map任务
    • 主要的决定因素有:input的文件总个数,input的文件大小,集群设置的文件块大小
    • 举例:
      • (a) 假设input目录下有1个文件a,大小为780M,那么hadoop会将该文件a分隔成7个块(6个128m的块和1个12m的块),从而产生7个map数
      • (b) 假设input目录下有3个文件a,b,c大小分别为10m,20m,150m,那么hadoop会分隔成4个块(10m,20m,128m,22m),从而产生4个map数。即,如果文件大于块大小(128m),那么会拆分,如果小于块大小,则把该文件当成一个块。
  • 
    
    
  • 2) 是不是map数越多越好?

    • 答案是否定的。
    • 如果一个任务有很多小文件(远远小于块大小128m),则每个小文件也会被当做一个块,用一个map任务来完成,而一个map任务启动和初始化的时间远远大于逻辑处理的时间,就会造成很大的资源浪费。而且,同时可执行的map数是受限的。
  • 3) 是不是保证每个map处理接近128m的文件块,就高枕无忧了?

    • 答案也是不一定。
    • 比如有一个127m的文件,正常会用一个map去完成,但这个文件只有一个或者两个小字段,却有几千万的记录,如果map处理的逻辑比较复杂,用一个map任务去做,肯定也比较耗时

    针对上面的问题2和3,我们需要采取两种方式来解决:即减少map数增加map数

4.11.2、小文件合并
  • map执行前合并小文件,减少map数:

  • CombineHiveInputFormat 具有对小文件进行合并的功能(系统默认的格式)

    set mapred.max.split.size=112345600;
    set mapred.min.split.size.per.node=112345600;
    set mapred.min.split.size.per.rack=112345600;
    set hive.input.format= org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;
    
    

    这个参数表示执行前进行小文件合并,前面三个参数确定合并文件块的大小,大于文件块大小128m的,按照128m来分隔,小于128m,大于100m的,按照100m来分隔,把那些小于100m的(包括小文件和分隔大文件剩下的),进行合并。

4.11.3、 复杂文件增加Map数
  • 当input的文件都很大,任务逻辑复杂,map执行非常慢的时候,可以考虑增加Map数,来使得每个map处理的数据量减少,从而提高任务的执行效率。

  • 增加map的方法

    • 根据 ==computeSliteSize(Math.max(minSize,Math.min(maxSize,blocksize)))==公式
    • 调整maxSize最大值。让maxSize最大值低于blocksize就可以增加map的个数。
    mapreduce.input.fileinputformat.split.minsize=1 默认值为1
    
    mapreduce.input.fileinputformat.split.maxsize=Long.MAXValue 默认值Long.MAXValue因此,默认情况下,切片大小=blocksize 
    
    maxsize(切片最大值): 参数如果调到比blocksize小,则会让切片变小,而且就等于配置的这个参数的值。
    
    minsize(切片最小值): 参数调的比blockSize大,则可以让切片变得比blocksize还大。
    
    
    • 例如
    --设置maxsize大小为10M,也就是说一个fileSplit的大小为10M
    set mapreduce.input.fileinputformat.split.maxsize=10485760;
    
4.11.4 合理设置Reduce数
  • 1、调整reduce个数 方法一

    • 1)每个Reduce处理的数据量默认是256MB

      set hive.exec.reducers.bytes.per.reducer=256000000;
      
      1. 每个任务最大的reduce数,默认为1009
      set hive.exec.reducers.max=1009;
      
      1. 计算reducer数的公式
      N=min(参数2,总输入数据量/参数1)
      
  • 2、调整reduce个数 方法二

    --设置每一个job中reduce个数
    set mapreduce.job.reduces=3;
    
  • 3、reduce个数并不是越多越好

    • 过多的启动和初始化reduce也会消耗时间和资源;

    • 同时过多的reduce会生成很多个文件,也有可能出现小文件问题

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值