三星860EVO SSD评测

本文组织:

  1. ZOL对冬瓜哥的采访视频

  2. 3D V-NAND及底层技术

  3. 860 EVO照片与规格

  4. AS SSD Benchmark简要测试

  5. I/O Meter测试

  6. 性能均匀性测试

  7. 压缩解压体验


1 ZOL对冬瓜哥采访视频



2 3D V-NAND及底层技术


冬瓜哥使用的第一块固态硬盘就是三星的840 EVO,当时就在想,再也不会有使用机械硬盘的时候的那种让人想砸键盘的冲动了。但是好景不长,由于冬瓜哥的电脑从不关机,为啥?因为开了太多的网页、文档、邮件窗口、一关机的整个状态就没有了。正因如此,系统越用越慢,内存越占越多。而此时,硬盘的压力也会随之增大,因为系统开始不断的往硬盘上page out 以及从硬盘上page in。另外,256G的SSD被各种材料、照片、视频塞的满满的,捉襟见肘,曾经用到过系统只剩下1MB空间,吓得我赶紧清理垃圾,实在不想崩溃后重启。看来是该升级SSD了。

640?wx_fmt=png

最近试用了一下三星860 EVO 1TB SSD,感觉系统速度的确有了质的提升。其采用了V-NAND(三星自家的3D NAND技术) TLC颗粒,以及三星自家主控。3D-NAND是一种提升单颗芯片内部存储密度的技术,传统的2D NAND只在晶元上蚀刻一层NAND晶体管,但是3D NAND将晶体管排布成高层建筑在硅片上一层层将整个结构生长起来,显著提升了存储密度。

640?wx_fmt=png

有兴趣了解固态存储介质底层技术的朋友可以点击以下链接:

【冬瓜哥论文】浅析固态介质在存储系统中的应用方式

《关于SSD元数据及掉电保护的误解

《关于闪存FTL的Host Base和Device Based的误解》

《关于SSD的CMB与HMB的误解》

【冬瓜哥手绘】上/下页、快/慢页、MSB/LSB都些什么鬼?

【续】关于对MSB/LSB写0时的步骤


3 860 EVO照片与规格

640?wx_fmt=png

640?wx_fmt=png

4 AS SSD Benchmark简要测试

冬瓜哥对860 EVO做了一个简要测试,并与其上两代产品对比了一下,性能提升还是比较明显的。由于本代产品使用了TLC颗粒,其读写延迟要高于上两代的MLC颗粒。但是由于主控、RAM都有所升级,所以整体吞吐量还是提升了的。

640?wx_fmt=png

(从左到右:  EVO 840、 EVO 850、EVO 860)


另外一个值得分享的是,想让SSD发挥出最佳性能,一个多核心高主频的CPU是不可或缺的。上图是冬瓜哥在一台服务器上做的测试。而如果在我的台式机上(i7 2600 CPU),性能会受到限制。另外一点值得注意的是,如果在BIOS中没有打开AHCI模式,则性能会有较大下降。

640?wx_fmt=png


5 I/O Meter测试

由于AS SSD Benchmark是一款傻瓜式测试软件,无法搞清楚其内部的各种参数。所以冬瓜哥又使用了IO Meter来测试了一下。在4K随机读场景下,使用24个线程、每线程64的Queue Depth,才将硬盘的性能完全榨干。如下图所示。

640?wx_fmt=png

对于32K大块顺序读场景,使用4线程、每线程64 Queue Depth,可将性能榨干。

640?wx_fmt=png

所以,这样就不用担心开了大量的任务之后硬盘性能跟不上了。



6 性能均衡性测试

所谓性能均匀性,是说一款硬盘设备在任意时刻体现出来的I/O延迟和完成顺序。冬瓜哥拿出了自己私藏的杀手锏对860 EVO进行了测试,发现其I/O完成的有序度很好,而且延迟也抖动也比较轻微,在1μs到50μs之间。

640?wx_fmt=png

640?wx_fmt=png

如下图。如果使用机械盘,则性能会非常不均匀,每次测试都会有不同的样式,而且延迟抖动在1μs到10ms之间,范围太大。这会带来很差的流畅度体验。

640?wx_fmt=png

640?wx_fmt=png

640?wx_fmt=png

640?wx_fmt=png



7 4路解压缩测试

640?wx_fmt=png

为了测试三星860EVO SSD的高并发性能在实际应用场景下的体验,冬瓜哥准备了包含有65536个20KB大小的文件压缩成的压缩包,为了不让CPU成为瓶颈,采用“存储”级别来压缩,也就是只打包不压缩。然后用WinRAR 5.50软件向860 EVO SSD上解压这些文件,记录解压时间,并将上述压缩包复制多份,测试2路、4路并行解压缩耗费的时间。测试环境为一台单路志强E5 2650服务器。


由于牵扯到大量小文件的写入操作,这种压力对硬盘而言是极度的挑战。我们来看看2/4路解压时的测试视频。



2路解压测试



4路解压测试


测试结论:

1路解压时间=17秒

2路并行解压时间=20秒

4路并行解压时间=27秒。

由于鼠标点击延迟,以及CPU已经成为瓶颈,更多路数解压缩已经无法说明SSD是否达到瓶颈。但是单就上面测试结果而言,三星860 EVO的并发性能称得上优秀。


三星还提供了对应的软件,该软件不仅可以监控硬盘的状态,还提供了一个RAPID Mode。其本质是采用RAM作为硬盘的缓存,能够将速度提升数倍,不过该特性用于测试很有效,实际使用起来还取决于具体应用场景了。

640?wx_fmt=png

640?wx_fmt=png


640?wx_fmt=png


### EVO评估工具中RPE命令的功能与使用 #### RPE 命令概述 相对姿态误差 (Relative Pose Error, RPE) 是一种常用的 SLAM 性能评估指标,用于衡量两个连续帧之间的位姿估计误差。EVO 工具提供了 `rpe` 命令来计算这一指标。该命令能够处理多种数据格式,并支持不同的度量单位和统计方法。 #### 数据准备 为了执行 RPE 计算,需要两组轨迹文件作为输入:参考真值轨迹和待测轨迹。这些文件通常以 `.txt` 或 ROS 袋包的形式存储。确保这两组轨迹的时间戳对齐,因为时间同步对于准确的误差计算至关重要[^2]。 #### 基本语法 以下是 `evo_rpe` 的基本调用方式: ```bash evo_rpe <pose_relation> <ref_traj_file> <est_traj_file> ``` - `<pose_relation>` 表示如何定义配对关系(例如平移或旋转),常见选项有 `trans`, `rot_angle`, 和 `full`. - `<ref_traj_file>` 是参考轨迹文件路径。 - `<est_traj_file>` 是待评测的估算轨迹文件路径。 #### 参数详解 除了上述必填参数外,还可以指定其他可选参数来自定义行为: | 参数 | 描述 | |---------------------|----------------------------------------------------------------------------------------| | `-a/--align_method` | 对齐方法,如无尺度相似变换 (`sim3`) 或仅平移对齐 (`translate_only`). | | `-p/--delta_poses` | 定义相邻帧间的关系,默认为每一对连续帧都参与计算。 | | `-u/--unit` | 输出单位,比如米 (`meters`) 或弧度 (`rad`). | #### 实际案例演示 假设我们有一份 TUM 格式的地面实况轨迹 `ground_truth.txt` 和一份 ORB-SLAM2 预估的结果 `estimated_trajectory.txt`. 下面展示了一个完整的命令实例: ```bash evo_rpe trans ground_truth.txt estimated_trajectory.txt \ --align sim3 \ --delta 1 \ --delta_unit s \ --verbose ``` 此命令会基于一秒间隔内的变化情况对比两条轨迹间的转换分量差异,并采用 SIM(3) 变换来优化初始位置偏差的影响[^3]. #### 结果解释 完成运算后,终端上将打印出一系列统计数据,包括但不限于均方根误差(RMSE),平均绝对误差(MAE),标准差(STDDEV)等。同时也可以借助附加插件生成图形化报告便于进一步解读。 ```python import matplotlib.pyplot as plt plt.plot(rpe_results['stamps'], rpe_results['errors']) plt.xlabel('Timestamp') plt.ylabel('Error Value') plt.title('RPE Analysis Result Visualization') plt.show() ``` 以上脚本片段可用于绘制随时间序列变化的趋势图[^1].
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值