- 博客(968)
- 收藏
- 关注
原创 OpenAI弃用立讯转向富士康,AI硬件供应链的重构与博弈
OpenAI弃用立讯转向富士康的订单转移事件,本质是技术需求与地缘环境共同作用的结果。在AI大模型迈向终端化的关键节点,硬件制造的精密性、全链条整合能力以及与AI模型的适配性,已成为决定企业竞争力的核心因素。此次事件不仅重塑了全球AI硬件的供应链格局,更揭示了未来AI产业"软件+硬件+供应链"深度协同的发展趋势。对于中国制造业而言,这既是挑战也是机遇。唯有加速技术升级,突破定制化制造与AI融合的核心短板,才能在全球AI硬件新赛道中实现突围。
2026-01-03 21:09:22
540
原创 AMD以47.27%的份额距Intel的55.47%仅一步之遥
2025年12月Steam硬件调查揭示的,不仅是AMD与Intel的份额此消彼长,更是PC游戏硬件市场“技术迭代与用户需求双向奔赴”的底层逻辑。AMD的崛起源于对游戏需求的精准把握,内存市场的矛盾则是AI时代产能重构与游戏技术升级的必然碰撞。未来,CPU市场的竞争将更聚焦于细分需求的精准满足,内存市场则需在AI与消费级需求之间寻找平衡,而国产厂商的崛起有望为市场注入新的活力。对于玩家而言,这场变革带来的不仅是更多选择,更是硬件与游戏体验的深度适配——而这,正是PC游戏硬件市场持续发展的核心动力。
2026-01-03 20:54:40
372
原创 存储随笔2025年技术创作总结
2025年的技术创作,就是“给自己留底,顺便给别人递个参考”。日常就是下班或者周末抽时间,把当天/当周学的技术点捋成笔记——既怕自己过俩月忘干净,也想着万一有人搜这个知识点,能省点翻文档的时间。不知不觉,一年居然112天都在创作,达到35.9万字。高产在22点后,是因为白天上班忙工作或者周末白天要陪娃,只有晚上能静下来构思敲字。全年150多篇里,有一半是“问题驱动”或者“好奇心驱动”。自己写一遍等于再复盘一次,同时能让路过的人少走点弯路,也算没白耗这时间。
2026-01-03 14:17:55
903
原创 共封装光学(CPO):下一代互联革命
Nvidia:产品:Quantum-X Q3450(115.2T,144×800G,2025H2上市)、Spectrum 6800(409.6T,512×800G,2026H2上市);技术路线:TSMC COUPE封装、MRM调制器、光栅耦合、外部激光源(Lumentum/Ayar Labs供应);战略定位:以横向扩展CPO验证供应链,最终聚焦纵向扩展场景(Feynman架构)。
2026-01-03 11:04:31
672
原创 NVMe DSM技术优化解读
背后的逻辑在于,DSM让SSD从“被动响应”变为“主动预判”:当用户启动AI应用时,SSD已通过DSM hint知晓模型文件的访问特征,提前将数据从QLC迁移至SLC缓存,同时触发预读机制填充缓冲区,从而实现模型的秒级加载。在AI技术重塑计算架构的浪潮中,存储的价值不再局限于容量和速度,而是转向“理解数据、优化数据”的智能能力。容量与性能的平衡:DSM支持1TB以上大容量QLC SSD的性能优化,通过动态SLC缓存分配,使QLC SSD在承载大模型的同时,性能接近TLC水平,实现成本与体验的兼顾。
2026-01-03 11:02:34
590
原创 PCIe 5.0/6.0时代:EDSFF凭什么淘汰U.2?
U.2的15年统治,源于其适配了过渡期"兼容为王"的市场需求;对于科技从业者而言,EDSFF的普及不仅意味着存储硬件的更新,更预示着数据中心架构的新一轮优化:更高的传输速率、更低的延迟、更优的能效比,将为AI、云计算、边缘计算等新兴技术提供更强大的存储支撑。对于企业用户而言,迁移至EDSFF并非简单的接口更换,而是面向未来的存储架构升级:随着PCIe 6.0服务器的普及,EDSFF将成为高速存储的标准形态,而U.2将逐渐退出高性能计算、AI训练、大数据分析等核心场景,仅保留在 legacy 系统维护中。
2026-01-03 11:01:04
408
原创 16K IU:大容量SSD的IO架构革命
当PostgreSQL的16K数据页在文件系统中被拆分为多个非连续的4K逻辑块时,FTL无法直接将其映射到连续的16K物理单元,只能通过RMW操作进行数据整合,这本质上是逻辑地址空间与物理地址空间的映射错位问题,单纯调整应用层页大小无法解决。未来,随着AI、大数据等应用的爆发式增长,数据量将持续指数级增长,大容量SSD的容量将向512TiB、1PiB迈进,块大小可能进一步升级至32K或64K,而LBS技术的核心思想——全链路对齐优化,将继续指导存储技术的发展方向。
2026-01-03 11:00:01
777
原创 SSD分布式控制器如何破解NAND性能困局?
当AI大模型训练动辄吞噬TB级数据、边缘设备实时推理对延迟提出微秒级要求,存储系统正从"数据容器"转变为AI算力的关键支撑。NAND闪存作为现代存储系统的核心组件,其技术迭代始终围绕"速度、容量、可靠性"三大维度展开。最新的ONFI 5.1标准带来了关键革新——分离命令地址(SCA)协议,这一协议通过将命令地址通道与数据通道分离,彻底改变了传统NAND的通信模式。从技术原理来看,SCA协议打破了命令与数据的传输耦合,使得多LUN(逻辑单元)并行操作成为可能,这正是应对AI并行数据访问需求的关键技术基础。扩展
2025-12-27 10:57:10
1043
原创 NVMe QLC SSD未来在何方?
3D堆叠技术:SK海力士的4D PUC(Peri Under Cell)架构将外围电路集成于存储单元下方,配合CTF(Cell Technology for Flash)工艺,已实现第五代产品的量产,通过增加堆叠层数(当前主流200+层,未来向500-1000层演进)抵消QLC单元特性退化的影响;AI存储的适配性:生成式AI的存储需求具有"空间密集+IO突发"的双重特性,QLC的高容量可满足Exabyte级集群需求,而其读取带宽优势(Meta实测可支持4倍于写入带宽的扩展)能匹配AI训练的随机读取场景;
2025-12-27 10:55:56
1368
原创 Windows NVMe技术革新与性能跃迁
在存储技术高速迭代的今天,NVMe(NVM Express)作为PCIe时代的存储协议标杆,早已成为高性能计算、数据中心乃至消费级设备的核心支撑。而微软作为操作系统生态的核心玩家,其在Windows系统中对NVMe技术的优化与革新,直接决定了硬件性能的释放上限。微软披露的Windows更新、原生NVMe架构重构以及未来功能规划,标志着NVMe技术在Windows生态中进入了全面优化的新阶段。
2025-12-27 10:54:47
702
原创 PCIe/CXL布线如何重构AI数据中心互联格局?
当AI模型参数规模突破万亿级,当分布式计算成为标配,传统的资源互联方式早已不堪重负。而PCIe与CXL技术的协同演进,正以布线革命为突破口,重新定义数据中心的资源调度规则。数据中心的互联技术迭代,始终围绕着"速度、兼容性、扩展性"三大核心诉求。PCIe与CXL两大技术路线的协同进化图谱,构成了资源互联的底层支撑。PCIe作为行业最普及的互联协议,其演进速度正在加速。
2025-12-27 10:53:39
1170
原创 浅析GPU SDC静默错误的机理与影响
SDC是指硬件或软件故障导致数据被篡改,但系统未产生任何错误提示,最终输出错误结果的现象。根据OCP规范定义,其与其他错误类型的区别如下:良性错误:故障未影响程序输出可纠正错误:ECC等机制检测并修复错误可检测不可恢复错误(DUE):检测到错误但无法修复,系统停止运行SDC:错误未被检测,导致输出异常GPU场景中,SDC主要分为两类:永久性故障(如制造缺陷、元件老化)和瞬态故障(如宇宙射线导致的单粒子翻转、电压波动)。其中瞬态故障占比更高,且更难预测。
2025-12-22 22:42:01
1363
原创 UALink与UEC如何重塑GPU互联标准?
当GPT-4带着万亿级参数震撼业界,当AI训练集群规模突破千台GPU大关,传统 interconnect 技术早已不堪重负。数据中心的算力革命,正卡在"最后一公里"——如何让海量GPU高效协同,实现低延迟、高带宽的无缝连接?由AMD、Intel、Broadcom等巨头联合推动的UALink与UEC标准,正以"AI原生"的设计理念,重新定义GPU互联的黄金准则。AI模型的爆发式增长,正在颠覆传统计算架构的底层逻辑。
2025-12-21 11:19:12
1122
原创 Agentic AI时代,如何用分层DRAM破解算力瓶颈?
当AI从“被动响应”进化到“主动决策”,Agentic AI(智能体AI)正重塑技术边界。这类基于大语言模型(LLM)的智能体,需要像人类一样融合工作记忆、程序记忆、语义记忆与情景记忆,实现自适应推理与决策。但随之而来的是史无前例的内存挑战——模型参数突破万亿级、上下文窗口扩容至百万token、向量数据库规模达千亿级,传统内存架构早已不堪重负。三星作为内存领域的领军者,近期提出的分层DRAM解决方案,为Agentic AI的内存困境提供了系统性答案。
2025-12-18 23:51:34
1146
原创 3D NAND与DRAM数据保持失效机制剖析
在生成式AI向智能体AI(Agentic AI)演进的浪潮中,存储系统正面临前所未有的可靠性挑战。不同于生成式AI"输入-输出-遗忘"的计算器式工作模式,智能体AI作为具备目标管理、状态记忆和计划修正能力的"项目管理者",需要持续稳定的工作内存支撑长期任务调度。这一需求直接推动DRAM和3D NAND存储技术向更高密度、更低延迟演进,但随之而来的数据保持失效问题已成为制约系统可用性的核心瓶颈。
2025-12-18 23:50:19
1681
原创 浅析PCIe SSC展频技术原理
在PCIe技术不断迭代的当下,Gen 5以32 GT/s的超高数据传输速率成为高性能计算、企业级服务器等场景的核心接口标准。然而,高速信号传输带来的电磁干扰(EMI)问题也愈发突出,成为系统设计与合规测试的关键瓶颈。Spread Spectrum Clocking(SSC,扩频时钟,也称展频)就成为了降低EMI的核心技术。
2025-12-18 23:48:17
1874
原创 SPHBM4来了|窄接口HBM4的妥协与突破
硅中介层的制备需要先进的晶圆工艺,成本占HBM封装成本的30%以上,而有机基板是成熟的量产技术,成本仅为硅中介层的1/5-1/3;反之,在中高端AI边缘计算、工业级计算等场景,SPHBM4的优势则十分明显:它能以低于HBM4的成本,提供同等带宽与更高容量,同时兼容传统有机基板,降低终端设备的设计与量产难度——这些场景对成本的敏感度低于消费级市场,对性能与容量的需求又高于GDDR能提供的上限,正是SPHBM4的核心目标市场。SPHBM4最直观的改变,是将HBM4的2048位接口压缩至512位,降幅达75%。
2025-12-15 22:45:10
1005
原创 MRDIMM、GDDR7、LPDDR5X原理与应用场景解读
当AI大模型训练迈入千亿参数时代,当数据中心CPU核心数突破百核大关,一个沉寂多年的“老问题”再次成为行业瓶颈——内存墙。CPU算力、PCIe带宽每年都在以两位数增速狂飙,但传统内存的带宽、容量、功耗平衡始终跟不上节奏。就在此时,三款重量级内存技术登场:MRDIMM、GDDR7、LPDDR5X,它们并非“替代关系”,而是分别瞄准数据中心高性能计算、边缘AI推理、低功耗云原生三大场景,共同掀起一场内存技术的颠覆性革命。今天我们就来深度拆解这三款“性能利器”,看看它们各自藏着什么黑科技,又能解决哪些实际痛点。
2025-12-14 11:56:26
1262
原创 SK海力士×NVIDIA联手,AI NAND性能狂飙30倍!
2025年12月,SK海力士副社长Kim Cheon-sung在“2025人工智能半导体未来技术会议(AISFC)”上的表态,为AI存储领域投下了一颗重磅炸弹——与NVIDIA联合开发的下一代AI NAND(AI-N P)将于2026年底推出样品,性能达现有企业级SSD的8-10倍;根据副社长的披露,AI-N P的性能突破并非简单的参数优化,而是基于“NAND闪存+控制器”的全架构重构,再结合与NVIDIA的生态协同,最终实现从“2500万IOPS样品”到“1亿IOPS量产品”的跨越。
2025-12-13 22:38:53
1229
原创 数据大国的存储短板:600亿HDD依赖如何突围?
这一庞大的市场需求,几乎完全依赖进口——全球范围内,仅有三家企业具备HDD规模化生产能力,且均为非中企,分别是美国的希捷(Seagate)、西部数据(Western Digital)和日本的东芝(Toshiba),形成了稳固的寡头垄断格局。“热度在AI,基础在盘片。HDD作为基础存储的核心组件,其技术突破或许不会一蹴而就,但只要产业链各方协同发力,从材料、设备到工艺逐步攻坚,中国存储产业就能实现从被动依赖到自主可控的跨越,真正撑起数据超级大国的存储根基。答案在于其看似传统的结构背后,隐藏着极高的技术门槛。
2025-12-12 23:09:46
1171
原创 深度解析HBM:AI时代的内存革命
从参数变化可见,HBM的演进路径清晰:通过增加堆叠层数(从4Hi到16Hi+)提升容量,通过工艺节点迭代(1y→1z→1a→1b→1c)提升单芯片密度,通过优化I/O设计提升数据速率,最终实现带宽的指数级增长。而HBM通过3D堆叠架构实现的超高带宽(当前HBM3E已达1.2TB/s,HBM4将突破2TB/s),恰好匹配了GPU/AI加速器的算力释放需求——以NVIDIA H100为例,搭配HBM3后,内存带宽达到传统DDR5的8倍,成为其实现千亿参数模型训练的关键支撑。
2025-12-12 23:08:00
1509
原创 如何破解DDR内存ECC开销与可靠性困境?
DDR5时代的ECC困境,本质上是传统"硬件冗余"思路在先进内存架构中的失效。微软RAIDDR方案的核心创新,在于从"被动增加冗余"转向"主动优化编码逻辑",通过符号级纠错的精准设计,破解了"高开销"与"低可靠性"的核心矛盾。RAIDDR的价值不仅在于技术层面的突破,更在于为行业树立了新的设计理念:内存可靠性设计应基于实际故障分布规律,实现"精准防护"而非"过度配置"。
2025-12-10 22:46:22
1597
原创 打破存储瓶颈:E2新形态SSD解析
Micron联合Meta、微软、三星等行业巨头推出的E2新形态SSD(EDSFF E2,规范编号SFF-TA-1042),并非简单的形态迭代,而是精准命中这一痛点的系统性解决方案——它以“兼容生态、高密度、低成本”为核心,重新定义了数据中心容量层存储的游戏规则。E2的核心逻辑是“牺牲最小化的形态兼容性,换取最大化的成本与性能收益”。随着E2规范的落地与原型的推出,数据中心存储的“SSD化”进程将进入加速期——未来5年,我们或许会看到:容量层存储不再是HDD的天下,而是以E2为代表的高容量SSD的主场。
2025-12-09 22:34:35
1093
原创 从I2C到I3C:NVMe SSD管理通道变更革
作为常年蹲守存储技术一线的博主,最近发现一个很有意思的趋势:数据中心里的NVMe SSD越堆越多,可管理它们的「通信频道」却一度跟不上节奏。曾经的I2C/SMBus就像乡间小路,面对成百上千块SSD的实时监控需求,要么拥堵卡顿,要么带宽告急。直到I3C协议的出现,才算给SSD管理装上了「高速公路」。
2025-12-07 23:02:30
1716
原创 Hynix/Kioxia CXL存储方案实测解读
CXL接口与低延迟闪存的结合,不仅是技术上的突破,更是内存架构的范式革新——它打破了"内存=DRAM,存储=SSD"的固有认知,构建了"按需扩展、弹性伸缩"的内存池化生态。从实测数据来看,AI推理性能提升30%、内存数据库25%卸载仅5%性能损失、多服务器TCO降低30%,这些指标充分证明了CXL闪存的实用价值。对于企业而言,CXL闪存不是DRAM的替代者,而是互补者——它让企业在不牺牲性能的前提下,以更低成本获得超大容量内存,从容应对AI、HPC、大数据带来的内存需求爆炸。
2025-12-07 23:01:02
1606
原创 EDSFF SSD接口:定义AI存储新范式
EDSFF的崛起并非简单的“形态替换”,而是存储架构对AI时代需求的深度重构。通过破除密度、功率、扩展性、冷却的技术边界,EDSFF不仅解决了当前AI服务器的存储痛点,更构建了面向PCIe Gen6、CXL 3.0、高功率密度机架的未来-proof架构。从行业趋势来看,随着Nvidia GB300等新一代AI机架的规模化部署,存储的功率密度、带宽需求将持续提升,EDSFF的技术优势将进一步凸显。
2025-12-07 22:59:36
1364
原创 Samsung铁电晶体管NAND:功耗下降96%
近日,三星高级技术研究院(SAIT)在《Nature》发表的研究展示了一种基于铁电场效应晶体管(FeFET)的新型3D NAND架构,通过将铁电材料与氧化物半导体通道结合,实现了前所未有的低功耗性能。传统电荷陷阱NAND:通过向浮栅注入/移除电子存储数据每次读写需对字线施加高通过电压(Vpass)(3-5V)以防止相邻单元干扰随着堆叠层数增加,功耗急剧上升,成为主要能耗源利用铁电材料(如掺杂氧化铪)的极化状态存储信息通过栅极电场控制铁电极化方向,无需高通过电压。
2025-12-04 21:26:56
2076
原创 NVIDIA SCADA|颠覆CPU主导时代,GPU全面接管存储IO
SCADA的诞生,标志着存储IO架构从“CPU中心”向“GPU中心”的正式转型。它通过GPU全接管控制路径与数据路径,解决了AI推理中小块IO的延迟与并发瓶颈,其性能超越GPUDirect的背后,是对AI workloads存储需求的深刻理解。对于企业而言,SCADA不仅意味着更高的推理效率和更低的TCO,更代表着一种适应未来实时AI的技术布局;对于存储行业而言,SCADA正在重构“性能指标”——IOPS/TCO取代容量/TCO成为核心竞争力,小块IO优化成为SSD设计的重中之重。
2025-12-02 23:45:49
1509
原创 从SRIOV到SIOV:PCIe虚拟化技术下一代革命
如果说SR-IOV是过去十年PCIe虚拟化的“标杆方案”,那SIOV就是为超大规模云数据中心、AI集群量身打造的“破局者”——它解决了SR-IOV难以逾越的扩展性瓶颈,同时平衡了性能、成本与生态兼容性。今天就从“为什么需要SIOV”到“SIOV到底强在哪”,再到“未来要解决什么问题”,做一次全方位深度拆解。
2025-12-02 23:44:24
2024
原创 存储计算卸载技术剖析与案例解读
SK hynix、Samsung、KIOXIA的存储端计算卸载方案,从不同应用场景切入,精准解决了数据密集型业务的核心痛点。通过激活存储设备的“隐藏算力”,不仅突破了传统架构的数据传输瓶颈,更重构了计算与存储的协同关系,为行业带来了效率与成本的双重优化。随着技术的持续迭代与生态的不断完善,存储端计算卸载将成为AI时代不可或缺的核心支撑技术,推动数据处理效率迈向新的高度。参考文献:如果您看完有所受益,欢迎点击文章底部左下角“关注”并点击“分享”、“在看基于CXL内存的热数据检测技术解读。
2025-11-24 23:27:20
745
原创 NAND恐面临持续3年供应短缺!
NAND行业正面临持续3年的产能短缺,2025-2028年供需缺口将逐步扩大,主要源于AI推理需求爆发与晶圆厂建设滞后的结构性矛盾。全球NAND月产能约170万片(12英寸晶圆),2025Q4产能利用率将达90%;AI驱动下2026年NAND需求增长率预计13.8%-20%,而新晶圆厂投产周期需3年以上。超大规模数据中心凭借长期合同优先保障供应,企业用户面临更严峻的SSD短缺;NAND价格进入上升周期,2025Q4企业级SSD价格涨幅已超10%。
2025-11-23 22:39:42
1175
原创 Backblaze 2025 Q3硬盘故障率报告解读
每年/季度,云存储服务商Backblaze发布的硬盘故障率报告都是存储行业的重要风向标。以下是对Backblaze发布的《2025年第三季度硬盘统计报告》进行深度技术剖析与解读。供各位读者参考!截至2025年6月30日,管理硬盘总量332,915块。其中启动盘3,970块,数据盘328,348块(Q3故障统计核心对象)。季度年化故障率(AFR):1.55%,较上季度(1.36%)显著上升,但接近2024年全年AFR(1.57%)。
2025-11-23 22:37:52
1009
原创 涨价 60%:AI 催生的产业链变局,不止于三星
三星的 60% 涨价本质是 AI 算力革命对存储行业的 “强制性重构”—— 需求端从 “消费驱动” 转向 “算力驱动”,供给端从 “规模扩张” 转向 “技术深耕”,产业链从 “价格博弈” 转向 “价值共创”。对企业而言,掌握 HBM、DDR5 等核心技术与国产替代机遇者将胜出;对消费者而言,电子设备 “涨价潮” 或成常态。这场风暴不仅改变存储行业的游戏规则,更将深刻影响全球科技产业的发展节奏。如果您看完有所受益,欢迎点击文章底部左下角“关注”并点击“分享”、“在看基于CXL内存的热数据检测技术解读。
2025-11-23 22:36:06
817
原创 未来5-10年,HDD仍然不可替代!
云服务通过 “智能数据分层技术”,自动将不同访问频率的数据分配到对应介质(热数据到 SSD、温数据到 HDD、冷数据到磁带),从而在 “大规模存储” 场景下,同时实现 “成本最优(capital structure)” 和 “性能最优(performance)”—— 这一机制进一步放大了 HDD 在 “温数据层” 的核心作用。其根本原因在于:HDD完美匹配了“数据量激增下的成本需求”“AI时代的活跃访问需求”与“绿色数据中心的可持续需求”,且自身技术迭代持续巩固优势。
2025-10-25 19:46:43
2010
原创 是“浴盆曲线”失灵,还是HDD变好了?
传统定义: 在可靠性工程中,描述产品故障率随时间变化的规律,形似一个浴缸的横截面,故得名浴缸曲线(Bathtub curve),也有叫法是浴盆曲线,又称U型曲线。它分为三个阶段:早期故障期(左端高): 因制造缺陷,产品在投入使用初期故障率较高。偶然故障期(中间低平): 缺陷产品被淘汰后,进入稳定的“生命期”,故障率低且恒定。损耗故障期(右端升高): 随着产品磨损老化,故障率开始显著上升。
2025-10-25 19:43:46
2632
原创 HDD如何在AI时代,守住数据存储的“基本盘”?
边缘存储是指将数据存储能力部署在靠近数据源(如工厂设备、摄像头、物联网终端、5G基站等)的位置,而非集中于中心云数据中心。其核心目标是降低延迟、减少带宽消耗、提升响应速度和本地数据自治能力。随着AIoT、智能制造、智慧交通、远程医疗等应用的普及,边缘节点产生的数据量呈指数级增长。例如,一个高清视频监控系统每天可产生数TB的数据,而工业传感器网络每秒采集的数据也需长期保留用于分析。根据公开报告[1]显示:到2030年边缘产生的数据增长22倍,占比达到21%。
2025-10-25 19:41:47
2266
原创 汽车存储技术的未来在何方?
随着汽车产业向电动化(EV)、自动驾驶(AD)、软件定义(SDV) 深度转型,存储系统已从传统“辅助数据载体”升级为支撑车辆安全运行、智能决策的核心基础设施。当前汽车存储面临“耐久性、性能、温度、安全”四重需求重构,同时需满足严苛的功能合规与长期 cybersecurity 要求。本文将结合三星、SK海力士、铠侠、慧荣科技、MPS等在FMS2025的相关信息,从需求变革、技术演进、合规体系、安全防御四个维度,深度剖析汽车存储的技术突破与行业挑战。
2025-10-16 21:44:07
1898
原创 2025年存储市场报告深度解读
周期低谷(2022年):收入同比-34%,核心原因是“供需失衡”——2021年厂商扩产(DRAM/NAND产能同比+15%)叠加消费电子需求疲软(PC出货量同比-16%、智能手机同比-11%),导致行业库存高企(库存周转天数超90天),被迫降价去库存;DRAM市场:中国占比26%($25B),仅次于美洲(预计35%),核心原因是中国拥有全球最大的服务器(浪潮、华为占全球25%份额)、PC(联想占全球24%份额)、智能手机(小米、传音占全球30%份额)产能,下游需求拉动内存采购;
2025-10-15 23:19:03
3586
原创 PC端AI推理存储IO流量剖析
本文基于Micron团队发布的《AI Inferencing Storage IO Traffic Profiling and Analysis》报告,对PC端AI推理过程中的存储IO流量特征展开系统性剖析。报告聚焦AI推理的核心步骤与性能指标,深入分析基准测试及实际应用(多模态、多模型、RAG)中的IO流量模式,并提炼出AI推理流量的独特性,为存储硬件优化与软件栈适配提供关键技术依据。随着大语言模型(LLM)、多模态AI在PC端的普及,AI推理已从“算力主导”转向“算力-存储协同主导”。
2025-10-14 23:04:59
2016
原创 全球DRAM市场趋势与技术演进解读
本文基于TrendForce研究报告,聚焦全球DRAM市场趋势与技术演进,涵盖多类存储技术对比、供应商竞争、产能布局、价格波动及未来增长点,数据支撑主要来自TrendForce,具备极强的行业参考价值。供各位读者参考!目前四类主流DRAM技术的定位存在较大差异,基于“场景-性能-功耗-成本”维度可以清晰明确各自的边界。HBM在带宽和功耗效率上最优,但成本最高;DDR在通用性上最优,但性能上限低;LPDDR和GDDR则分别在“移动效率”和“固定场景速度”上形成细分优势。
2025-10-13 23:52:42
2699
2022年FMS(Flash Memory Submit) CXL论坛全景资料
2022-09-10
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅