11.3 总体配置
本项目的总体配置涵盖多代理管理、任务规划与执行,以及工具调用集成。本系统支持模块化扩展,允许用户根据需求添加或调整代理与工具,以适应不同应用场景。通过高效的流程控制和任务管理机制,确保代理间的协作顺畅,并提升自动化任务的执行效率。
11.3.1 项目配置
文件config.example.toml是本项目的配置文件,主要用于设置 LLM(大语言模型)的 API 连接信息。它支持多种模型提供商,如 Anthropic Claude、Amazon Bedrock、Azure OpenAI 和DeepSeek、Ollama,并允许用户选择适合的 API 进行调用。文件还包括视觉模型(Vision LLM)的相关配置、可选的浏览器自动化设置(如是否启用无头模式、代理支持等)、搜索引擎偏好(如 Google、Baidu 或 DuckDuckGo),以及用于沙盒环境(如 Python 容器运行环境)的相关参数。这些配置可以灵活调整,使 OpenManus 能够适配不同的 AI 代理应用场景。
# 全局 LLM 配置
[llm]
model = "claude-3-7-sonnet-20250219" # 要使用的 LLM 模型
base_url = "https://api.anthropic.com/v1/" # API 端点 URL
api_key = "YOUR_API_KEY" # 您的 API 密钥
max_tokens = 8192 # 响应中的最大令牌数
temperature = 0.0 # 控制随机性
# [llm] # Amazon Bedrock
# api_type = "aws" # 必需
# model = "us.anthropic.claude-3-7-sonnet-20250219-v1:0" # Bedrock 支持的模型 ID
# base_url = "bedrock-runtime.us-west-2.amazonaws.com" # 当前未使用
# max_tokens = 8192
# temperature = 1.0
# api_key = "bear" # 必需但在 Bedrock 中未使用
# [llm] # AZURE OPENAI:
# api_type= 'azure'
# model = "YOUR_MODEL_NAME" #"gpt-4o-mini"
# base_url = "{YOUR_AZURE_ENDPOINT.rstrip('/')}/openai/deployments/{AZURE_DEPLOYMENT_ID}"
# api_key = "AZURE API KEY"
# max_tokens = 8096
# temperature = 0.0
# api_version="AZURE API VERSION" #"2024-08-01-preview"
# 特定 LLM 模型的可选配置
[llm.vision]
model = "claude-3-7-sonnet-20250219" # 要使用的视觉模型
base_url = "https://api.anthropic.com/v1/" # 视觉模型的 API 端点 URL
api_key = "YOUR_API_KEY" # 视觉模型的 API 密钥
max_tokens = 8192 # 响应中的最大令牌数
temperature = 0.0 # 控制视觉模型的随机性
# [llm.vision] # OLLAMA VISION:
# api_type = 'ollama'
# model = "llama3.2-vision"
# base_url = "http://localhost:11434/v1"
# api_key = "ollama"
# max_tokens = 4096
# temperature = 0.0
# 可选配置,特定浏览器配置
# [browser]
# 是否以无头模式运行浏览器(默认:false)
# headless = false
# 禁用浏览器安全特性(默认:true)
# disable_security = true
# 传递给浏览器的额外参数
# extra_chromium_args = []
# 要用于连接到您的常规浏览器的 Chrome 实例路径
# 例如:'/Applications/Google Chrome.app/Contents/MacOS/Google Chrome'
# chrome_instance_path = ""
# 通过 WebSocket 连接到浏览器实例
# wss_url = ""
# 通过 CDP 连接到浏览器实例
# cdp_url = "
11.3.2 DeepSeek配置
如果想基于DeepSeek实现本Agent项目,可以通过如下两种方式实现。
1. 直接调用DeepSeek API
在文件config.example.toml中进行配置,例如使用如下代码配置全局 LLM。
[llm]
api_type = "deepseek" # 指定 API 类型为 deepseek
model = "deepseek-chat" # 要使用的 DeepSeek 模型
base_url = "https://api.deepseek.com/v1" # DeepSeek API 的基础 URL
api_key = "YOUR_DEEPSEEK_API_KEY" # 您的 DeepSeek API 密钥
max_tokens = 8192 # 响应的最大 token 数
temperature = 0.7 # 控制生成的随机性
2. 通过Ollama接入
也可以在 Ollama 中配置 DeepSeek 模型,然后在项目中引用 Ollama。Ollama 是一个本地大语言模型运行框架,支持管理和运行多种模型,包括 DeepSeek。在Ollama中接入DeepSeek API后,可以在文件config.example.toml中进行如下配置,这样也可以基于DeepSeek模型实现本Agent项目。
[llm] # OLLAMA:
api_type = 'ollama'
model = "llama3.2"
base_url = "http://localhost:11434/v1"
api_key = "ollama"
max_tokens = 4096
temperature = 0.0