要找到和为给定值的所有的等比数列.
1肯定是要特判一下.
我的想法是先找到所有等比为1的,等比为1就是将这个数分为相同的一些数,总共就是这个数的所有约数个数减一(有一个约数为1,题目要求至少分成两个数).
对于其他的等比不为1 的,用等比数列的求和公式暴力一发就行了.
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long ll;
const int MAXN=1e5+5;
int prime[MAXN];
int check[MAXN];
int tot=0;
ll n;
ll ans;
void creat_prime()
{
for(int i=2;i<MAXN;i++)
{
if(!check[i]) prime[tot++]=i;
for(int j=0;j<tot && prime[j]*i<MAXN;j++)
{
check[i*prime[j]]=true;
if(i%prime[j]==0) break;
}
}
}
void init()
{
ans=1;
ll m=n;
for(int i=0;i<tot;i++)
{
int tmp=0;
while(m%prime[i]==0)
{
tmp++;
m/=prime[i];
}
ans*=(tmp+1);
if(m==1) break;
}
ans--;
}
ll quick_pow(ll a,ll b)
{
ll ret=1;
while(b)
{
if(b&1) ret*=a;
b>>=1; a*=a;
}
return ret;
}
int main()
{
//printf("%lld",quick_pow(2,10));
creat_prime();
while(~scanf("%I64d",&n))
{
if(n==1)
{
ans=0;
printf("%I64d\n",ans);
continue;
}
init();
for(int i=2;i<n;i++)
{
for(int j=2;j<n;j++)
{
ll tmp=(quick_pow(i,j)-1)/(i-1);
if(tmp>n) break;
if(n%tmp==0)
{
ans++;
}
}
}
printf("%I64d\n",ans);
}
}