本原勾股数组

勾股数我们都很熟悉,a2+b2=c2,可是如何快速找到所有的勾股数组呢?

本原勾股数组a2+b2=c2性质:

1. a,b奇偶不同,c一定是奇数
2. 若b为偶数,c-b和c+b一定是完全平方数
3. 设t>s>=1,且均为奇数,则 a = s ∗ t , b = ( t ∗ t − s ∗ s ) / 2 , c = ( t ∗ t + s ∗ s ) / 2 a=s*t,b=(t *t-s *s)/2,c=(t *t+s *s)/2 a=st,b=(ttss)/2,c=(tt+ss)/2;其中a为奇数,b为偶数

有上面的性质以后我们就能迅速得到所有的勾股数组。

下面进行证明:

显然:gcd(a,b,c)=1,则由a2+b2=c2得到a,b,c两两互质。如果其中两个不互质则通过等式另一个肯定也含有相同的因子。

证明性质1:
假如a,b同为偶数,则c为偶数,则gcd(a,b,c)!=1,不可能。
假如a,b同为奇数,设a=2x+1,b=2y+1,则c2=4x2+4x+1+4y2+4y+1为偶数,则c必定为偶数,令c=2z,则2z2=2(x2+y2+x+y)+1,奇数不可能等于偶数,因此不成立。
故a,b奇偶不同,则c一定是奇数。QED
证明性质2:
另t=gcd(c-b,c+b),则 t ∣ 2 c , t ∣ 2 b , 若 t > 1 , 则 t / 2 ∣ c , t / 2 ∣ b , 所 以 t / 2 = g c d ( b , c ) = 1 , t = 2 t|2c,t|2b,若t>1,则t/2|c,t/2|b,所以t/2=gcd(b,c)=1,t=2 t2c,t2b,t>1,t/2c,t/2b,t/2=gcd(b,c)=1,t=2所以t=1或者2.
又因为t|(c-b)(c+b)=a*a,a为奇数,所以不可能。因此t=1,c-b和c+b互质。

因为(c-b)(c+b)=aa,c-b,c+b均为完全平方数(由算术基本定理可知,他们的质因子的幂必须是偶数)QED
证明性质3:有以上,我们令s2=c-b,t2=c+b,则a=st,b=(t *t-s *s)/2,c=(t * t+s * s)/2。由a为奇数可得,s,t为奇数。QED

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值