POJ 3696 欧拉函数+快速幂

题目的意思大概就是问是否存在一串全是8的数字是L的倍数

直接想没有什么想法,要想到用简洁的形式将这个数字表示出来,对于每一位都是8的数字我们可以用
X=8*(10k-1)/9的形式表示出来,那么题目的意思就是求X使L|X,我们先处理一下8和L,即除去他们的最大公约数,然后就是L’|(10k-1)/9,即就是10k-1|9L’我们用L’'表示9L’

问题就转化成了要求10k-1%L’’==0,10k=1(mod L’’)(其实找的是在模L’'剩余系中10的阶)

如果10和L’'不互质那么10没有阶

由欧拉定理我们得知,10f(L’’)=1(mod L’’),因此阶一定是f(L’’)的因子,其中f(n)代表的是n的欧拉函数,因此我们从小到大查找欧拉函数值的所有因子直到找到阶

在这种思路下有如下代码

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<ctime>
#include<climits>
#include<queue>
#include<vector>
#include<set>
#include<map>
using namespace std;

typedef long long ll;
const int INF=0x3f3f3f3f;
const int MAXN=1e5+5;

ll L;

ll gcd(ll a,ll b)
{
    return b==0?a:gcd(b,a%b);
}

ll phi(ll x)
{
    ll ret=1;
    for(ll i=2;i*i<=x;i++)
    {
        if(x%i==0)
        {
            ret*=(i-1);
            x/=i;
            while(x%i==0)
            {
                ret*=i;
                x/=i;
            }
        }
        if(x==1) break;
    }
    if(x>1) ret*=(x-1);
    return ret;
}

ll mult(ll a,ll b,ll t)
{
    a%=t; b%=t;
    ll ret=0;
    while(b)
    {
        if(b&1)
        {
            ret+=a; if(ret>t) ret-=t;
        }
        a<<=1; b>>=1;
        if(a>t) a-=t;
    }
    return ret;
}

ll quick_pow(ll a,ll b,ll t)
{
    ll ret=1;
    a%=t;
    while(b)
    {
        if(b&1) ret=mult(ret,a,t);
        a=mult(a,a,t);
        b>>=1;
    }
    return ret;
}

int main()
{
    int Case=0;
    while(~scanf("%lld",&L) && L)
    {
        ++Case;
        ll t=gcd(8,L);
        L=L/t*9;
        ll ans;
        if(L%2==0 || L%5==0)
        {
            ans=0;
        }
        else
        {
            t=phi(L);
            ans=-1;
            //printf("t=%lld\n",t);
            ll tt=sqrt(t)+1;
            for(ll i=1;i<=tt;i++)
            {
                if(t%i==0 && quick_pow(10,i,L)==1)
                {
                    ans=i;
                    break;
                }
            }
            if(ans<0)
            for(ll i=tt;i>0;i--)
            {
                if(t%i==0 && quick_pow(10,t/i,L)==1)
                {
                    ans=t/i;
                    break;
                }
            }
        }
        printf("Case %d: %lld\n",Case,ans);
    }
    return 0;
}

这里求欧拉函数值的用了p为素数,f(pk)=(k-1)*pk-1。然后在遍历欧拉函数因子的时候用到一个技巧:任何一个数的因子都可以和另一个因子相乘得到这个数,这两个因子中一个大一个小,小的一定小于等于sqrt(n),因此我们在查找因子的时候不要遍历1—n,而是先遍历1—sqrt(n)查找较小的因子,如果没有找到, 再从sqrt(n)—1,查找相对应的较大的因子,这样就将原来O(n)的复杂度降低为O(logn)的复杂度,十分巧妙

这里放一个优化版本的

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<ctime>
#include<climits>
#include<queue>
#include<vector>
#include<set>
#include<map>
using namespace std;

typedef long long ll;
const int INF=0x3f3f3f3f;
const int MAXN=1e5+5;

ll L;

ll gcd(ll a,ll b)
{
    return b==0?a:gcd(b,a%b);
}

ll phi(ll x)
{
    ll ret=x;
    for(ll i=2;i*i<=x;i++)
    {
        if(x%i==0)
        {
            ret=ret/i*(i-1);
            x/=i;
            while(x%i==0)
            {
                x/=i;
            }
        }
        if(x==1) break;
    }
    if(x>1) ret=ret/x*(x-1);
    return ret;
}

ll mult(ll x, ll y, ll p) 
{
    long double d=1;
    d=d*x/p*y;
    return ((x*y-((ll)d)*p)%p+p)%p;
}

ll quick_pow(ll a,ll b,ll t)
{
    ll ret=1;
    a%=t;
    while(b)
    {
        if(b&1) ret=mult(ret,a,t);
        a=mult(a,a,t);
        b>>=1;
    }
    return ret;
}

int main()
{
    int Case=0;
    while(~scanf("%lld",&L) && L)
    {
        ++Case;
        ll t=gcd(8,L);
        L=L/t*9;
        ll ans;
        if(L%2==0 || L%5==0)
        {
            ans=0;
        }
        else
        {
            t=phi(L);
            ans=-1;
            //printf("t=%lld\n",t);
            ll tt=sqrt(t)+1;
            for(ll i=1;i<=tt;i++)
            {
                if(t%i==0 && quick_pow(10,i,L)==1)
                {
                    ans=i;
                    break;
                }
            }
            if(ans<0)
            for(ll i=tt;i>0;i--)
            {
                if(t%i==0 && quick_pow(10,t/i,L)==1)
                {
                    ans=t/i;
                    break;
                }
            }
        }
        printf("Case %d: %lld\n",Case,ans);
    }
    return 0;
}

主要优化了快速幂中long long 乘法部分和欧拉函数值的求值.

这里欧拉函数值的求法用到欧拉函数容斥原理求法.即
f ( n ) = n ∗ ( p 1 − 1 ) / p 1 ∗ ( p 2 − 1 ) / p 2 ∗ . . . . . ∗ ( p k − 1 ) / p k f(n)=n*(p1-1)/p1*(p2-1)/p2*.....*(pk-1)/pk f(n)=n(p11)/p1(p21)/p2.....(pk1)/pk这里pi为n的素因子

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值