CodeForces - 527C Glass Carving(STL)

Leonid wants to become a glass carver (the person who creates beautiful artworks by cutting the glass). He already has a rectangular w mm  ×  h mm sheet of glass, a diamond glass cutter and lots of enthusiasm. What he lacks is understanding of what to carve and how.

In order not to waste time, he decided to practice the technique of carving. To do this, he makes vertical and horizontal cuts through the entire sheet. This process results in making smaller rectangular fragments of glass. Leonid does not move the newly made glass fragments. In particular, a cut divides each fragment of glass that it goes through into smaller fragments.

After each cut Leonid tries to determine what area the largest of the currently available glass fragments has. Since there appear more and more fragments, this question takes him more and more time and distracts him from the fascinating process.

Leonid offers to divide the labor — he will cut glass, and you will calculate the area of the maximum fragment after each cut. Do you agree?

Input

The first line contains three integers w, h, n (2 ≤ w, h ≤ 200 0001 ≤ n ≤ 200 000).

Next n lines contain the descriptions of the cuts. Each description has the form H y or V x. In the first case Leonid makes the horizontal cut at the distance ymillimeters (1 ≤ y ≤ h - 1) from the lower edge of the original sheet of glass. In the second case Leonid makes a vertical cut at distance x (1 ≤ x ≤ w - 1) millimeters from the left edge of the original sheet of glass. It is guaranteed that Leonid won't make two identical cuts.

Output

After each cut print on a single line the area of the maximum available glass fragment in mm2.

Example
Input
4 3 4
H 2
V 2
V 3
V 1
Output
8
4
4
2
Input
7 6 5
H 4
V 3
V 5
H 2
V 1
Output
28
16
12
6
4
Note

Picture for the first sample test:

Picture for the second sample test:

思路就是将宽度和长度分开储存,分别求出两者的最大值,然后就可算出结果

一开始想着用两个数组存所有的分割点,最后用sort排序然后一个一个算出亮点间距离得出最大值,结果会超时

所以后来换用STL中的set来做

利用set保留值不重复且自动排序的特点,将割点用set保存

利用multiset可以保留重复值且也能自动排序的特点,将距离用multiset保存

这样在插入点的时候,set加入这个新的点,然后搜索这个新点的前后两个点,就可以得出被分割的那一段距离的大小X,然后在multiset中删除这段距离X(注意一次只能删除一段,如果用erase(X)的话会删除所有的段,只能erase(find(X)),具体操作可以去看看set用法的详解)

删除后将新生成的两段距离加入multiset,然后就可以输出答案了


代码

#include<iostream>
#include<cstring>
#include<algorithm>
#include<set>
using namespace std;
set<long long>h1;
set<long long>w1;
set<long long>::iterator it;
multiset<long long>h2;
multiset<long long>w2;
multiset<long long>::iterator it2;
int main()
{
    ios::sync_with_stdio(false);
    int w,h,n;
    int sta,last;
    int pos;
    char order;
    int maxw,maxh;
    while(cin>>w>>h>>n)
    {
        w1.clear();
        w2.clear();
        h1.clear();
        h2.clear();
        w1.insert(0);
        h1.insert(0);
        w1.insert(w);
        h1.insert(h);
        w2.insert(w);
        h2.insert(h);
        for(int i=0;i<n;i++)
        {
            cin>>order>>pos;
            if(order=='H')
            {
                h1.insert(pos);
                sta=*(--h1.find(pos));
                last=*(++h1.find(pos));
                h2.erase(h2.find(last-sta));
                h2.insert(pos-sta);
                h2.insert(last-pos);
            }
            else
            {
                w1.insert(pos);
                sta=*(--w1.find(pos));
                last=*(++w1.find(pos));
                w2.erase(w2.find(last-sta));
                w2.insert(pos-sta);
                w2.insert(last-pos);
            }
            it2=w2.end();
            it2--;
            maxw=*it2;
            it2=h2.end();
            it2--;
            maxh=*it2;
            cout<<(*(--w2.end()))*(*(--h2.end()))<<endl;
        }
    }
    return 0;
}





引用\[1\]中提到了一种树形动态规划的方法来解决CodeForces - 982C问题。在这个问题中,subtree指的是子连通块,而不是子树。为了使cnt_white - cnt_black尽可能大,可以使用两次树形动态规划来求解。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。如果ans\[u\]为正,则减去dp\[v\]就是树链所代表的子树的权值。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] 问题: CodeForces - 982C 树形DP是什么问题?如何解决? 回答: CodeForces - 982C是一个树形动态规划问题。在这个问题中,需要求解子连通块的最大权值和,使得cnt_white - cnt_black尽可能大。解决这个问题的方法是使用两次树形动态规划。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] #### 引用[.reference_title] - *1* *2* [CodeForces - 1324F Maximum White Subtree(树形dp)](https://blog.csdn.net/qq_45458915/article/details/104831678)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值