TensorFlow之CNN实现MNIST手写数字识别

本文介绍了如何使用TensorFlow实现CNN来识别MNIST数据集中的手写数字。通过创建卷积层、池化层和全连接层,构建了一个简单的神经网络,并利用梯度下降进行训练,最终计算并输出了训练过程中的准确率。
摘要由CSDN通过智能技术生成

1. MNSIT介绍:

    MNIST( http://yann.lecun.com/exdb/mnist/)是深度学习入门必定会接触到,很多的教程都是用这个数据集做例子

    MNIST 数据集来自美国国家标准与技术研究所, National Institute of Standards and Technology (NIST). 训练集 (training set) 由来自 250 个不同人手写的数字构成, 其中 50% 是高中学生, 50% 来自人口普查局 (the Census Bureau) 的工作人员. 测试集(test set) 也是同样比例的手写数字数据    

MNIST数据集包含四个部分:

    >Training set image

    >Training set labels

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值